Fire Detection over Africa using MSG/SEVIRI data

Malik Amraoui⁽¹⁾, Carlos C. DaCamara⁽²⁾ and José M. C. Pereira⁽³⁾

⁽¹⁾ UTAD, Vila Real, Portugal ⁽²⁾ CGUL/IDL, Lisbon, Portugal ⁽³⁾ DEF/ISA, Lisbon, Portugal

BACKGROUND AND MAIN OBJECTIVES

The potential of the **SEVIRI instrument** on-board the **MSG series**, for applications related to a wide range of **fire processes**, has long been recognized. **Applications** vary from pre-fire signal and **fire detection** to **fire monitoring** and burnt scar discrimination.

EUMETSAT's **Satellite Application Facility for Land Surface Analysis (LSA SAF)** is currently committed to **develop an algorithm** capable of **detecting and monitoring active fires**, particularly over Africa, that will lead to the operational generation, archiving and dissemination of the so-called **Fire Detection and Monitoring (FD&M) product**.

The **major contribution** of MSG/SEVIRI to the question of fire in Africa lies in the **reduction of uncertainties** in **biomass burning** estimation, and in the analysis of its diverse **environmental consequences**. It is also expected that active fire monitoring at **high frequency** will allow characterizing the **diurnal fire cycle**.

In **southern Africa** the burning season coincides approximately with the boreal summer, and fires progress in a West-East direction, from northern Angola and southern Congo in June-July, to Tanzania and Mozambique in September-October.

We present the first results obtained with a **contextual algorithm for active fire detection** based on **information from MSG/SEVIRI**. The algorithm was applied to a set of **Meteosat-8 images** covering the month of **July 2005**, with intervals of **15 minutes**.

We have paid special attention to the **diurnal fire cycles** over **southern Africa** as well as over **four different types of vegetation cover**. We have also looked at the **duration of fire events** on each fire pixel and the obtained **exponential-type** distribution is worth being noted.

DIURNAL CYCLE OF ACTIVE FIRES

DURATION OF ACTIVE FIRES

Evergreen Broadeaf Forest Woody Searches Searches Vegetation Mosaic Other Active fires Water Bodies

FIRE DETECTION ALGORITHM

1st step - Masks

- Mask of inland water bodies including rivers and lakes
- · Mask of desert regions

2nd step – Selection of potential fire pixels

- Day time: $[(TB(3.9) \ge 318K) \cap (TB(3.9) TB(10.8) \ge 10K)]$
- Night time: $[(TB(3.9) \ge 308K) \cap (TB(3.9) TB(10.8) \ge 3K)]$

3rd step – Rejection I (clouds)

- Day time: $[R(0.6) + R(0.8) > 1,2] \cup [TB(12) < 265K] \cup [(R(0.6) + R(0.8) > 0,8) \cap (TB(12) < 285K)]$
- Night time: [TB(12) < 265K]

4th step – Rejection II (high reflective surfaces)

Day time only: $[R(0.8) \ge 0.25]$

5th step – Rejection III (sun glint)

• Day time only: $\left[\theta_s < 5^\circ\right] \cup \left[\left(\theta_s < 15^\circ\right) \cap \left(R(0.8) > 0.2\right)\right]$

6th step – Confirmation of potential fire pixel

- Day time: $\left[TB_{PF}(3.9) > \overline{TB}(3.9) + \delta(3.9) 3 \right] \cap \left[\Delta T_{PF} > \overline{\Delta T} + MAX(2.5*\delta(\Delta T), 4) \right]$
- Night time $\Delta T_{PF} > \Delta \overline{T} + MAX(2,5*\delta(\Delta T),4)$

where:
$$\overline{TB}(3.9) = \frac{1}{N} \sum_{i=1}^{N} [TB_i(3.9)]$$

$$\delta(3.9) = \frac{\sum_{i=1}^{N} |TB_i(3.9) - \overline{TB}(3.9)|}{N}$$
$$\overline{\Delta T} = \frac{1}{N} \sum_{i=1}^{N} [TB_i(3.9) - TB_i(10.8)] = \frac{1}{N} \sum_{i=1}^{N} \Delta T_i$$
$$\delta(\Delta T) = \frac{\sum_{i=1}^{N} |\Delta T_i - \overline{\Delta T}|}{N}$$

- The above statistics are computed over valid ⁽¹⁾ neighbouring ⁽²⁾ pixels.
- ⁽¹⁾ i.e. non-water, free-cloud, not affected by high reflection or sun glint and not potential fire pixels
- ⁽²⁾ i.e. inside a 5×5 pixel window centered at the considered pixel