

## **VIIRS FIRE PRODUCTS UPDATE**

## Ivan Csiszar<sup>1</sup>, Wilfrid Schroeder<sup>2</sup>, Louis Giglio<sup>2</sup>, Brad Wind<sup>2</sup>, Evan Ellicott<sup>2</sup>, Christopher O. Justice<sup>2</sup>

<sup>1</sup>NOAA/NESDIS Center for Satellite Applications and Research, Camp Springs, MD <sup>2</sup>University of Maryland, College Park, MD

This work was supported by the NOAA JPSS and NASA Suomi NPP programs



## **VIIRS Heritage: MODIS and AVHRR**

| VIIRS |                 |         | MODIS Equivalent |                                    |              | AVHRR-3 Equivalent |                                    |              | OLS Equivalent |                                |             |
|-------|-----------------|---------|------------------|------------------------------------|--------------|--------------------|------------------------------------|--------------|----------------|--------------------------------|-------------|
| Band  | Range (um)      | HSR (m) | Band             | Range                              | HSR          | Band               | Range                              | HSR          | Band           | Range                          | HSR         |
| DNB   | 0.500 - 0.900   |         |                  |                                    |              |                    |                                    |              | HRD<br>PMT     | 0.580 - 0.910<br>0.510 - 0.860 | 550<br>2700 |
| M1    | 0.402 - 0.422   | 750     | 8                | 0.405 - 0.420                      | 1000         |                    |                                    |              |                |                                |             |
| M2    | 0.436 - 0.454   | 750     | 9                | 0.438 - 0.448                      | 1000         |                    |                                    |              |                |                                |             |
| М3    | 0.478 - 0.498   | 750     | 3                | 0.459 - 0.479                      | 500          |                    |                                    |              |                |                                |             |
|       |                 |         | 10               | 0.483 - 0.493                      | 1000         |                    |                                    |              |                |                                |             |
| M4    | 0.545 - 0.565   | 750     | 4                | 0.545 - 0.565                      | 500          |                    |                                    |              |                |                                |             |
|       |                 |         | 12               | 0.546 - 0.556                      | 1000         |                    |                                    |              |                |                                |             |
| 11    | 0.600 - 0.680   | 375     | 1                | 0.620 - 0.670                      | 250          | 1                  | 0.572 - 0.703                      | 1100         |                |                                |             |
| М5    | 0.662 - 0.682   | 750     | 13               | 0.662 - 0.672                      | 1000         | 1                  | 0.572 - 0.703                      | 1100         |                |                                |             |
| 1115  | 0.002 - 0.002   |         | 14               | 0.673 - 0.683                      | 1000         |                    |                                    |              |                |                                |             |
| M6    | 0.739 - 0.754   | 750     | 15               | 0.743 - 0.753                      | 1000         |                    |                                    |              |                |                                |             |
| 12    | 0.846 - 0.885   | 375     | 2                | 0.841 - 0.876                      | 250          | 2                  | 0.720 - 1.000                      | 1100         |                |                                |             |
| M7    | 0.846 - 0.885   | 750     | 16               | 0.862 - 0.877                      | 1000         | 2                  | 0.720 - 1.000                      | 1100         |                |                                |             |
| M8    | 1.230 - 1.250   | 750     | 5                | SAME                               | 500          |                    |                                    |              |                |                                |             |
| M9    | 1.371 - 1.386   | 750     | 26               | 1.360 - 1.390                      | 1000         |                    |                                    |              |                |                                |             |
| 13    | 1.580 - 1.640   | 375     | 6                | 1.628 - 1.652                      | 500          |                    |                                    |              |                |                                |             |
| M10   | 1.580 - 1.640   | 750     | 6                | 1.628 - 1.652                      | 500          | 3a                 | SAME                               | 1100         |                |                                |             |
| M11   | 2.225 - 2.275   | 750     | 7                | 2.105 - 2.155                      | 500          |                    |                                    |              |                |                                |             |
| 14    | 3.550 - 3.930   | 375     | 20               | 3.660 - 3.840                      | 1000         | 3h                 | SAME                               | 1100         |                |                                |             |
| M12   | 3 660 - 3 840   | 750     | 20               | SAME                               | 1000         | 3b                 | 3.550 - 3.930                      | 1100         |                |                                |             |
|       |                 |         | 21               | 3.929 - 3.989                      | 1000         |                    |                                    |              |                |                                |             |
| M13   | 3.973 - 4.128   | 750     | 22               | 3.929 - 3.989                      | 1000         |                    |                                    |              |                |                                |             |
|       |                 |         | 23               | 4.020 - 4.080                      | 1000         |                    |                                    |              |                |                                |             |
| M14   | 8 400 - 8 700   | /50     | 29               | SAWE                               | 1000         |                    |                                    |              |                |                                |             |
| M15   | 10.263 - 11.263 | 750     | 31               | 10.780 - 11.280                    | 1000         | 4                  | 10.300 - 11.300                    | 1100         |                |                                |             |
| 15    | 10.500 - 12.400 | 375     | 31<br>32         | 10.780 - 11.280<br>11.770 - 12.270 | 1000<br>1000 | 4<br>5             | 10.300 - 11.300<br>11.500 - 12.500 | 1100<br>1100 | HRD            | 10.300 - 12.900                | 550         |
| M16   | 11.538 - 12.488 | 750     | 32               | 11.770 - 12.270                    | 1000         | 5                  | 11.500 - 12.500                    | 1100         |                |                                |             |

## **VIIRS Detector Aggregation Scheme**



## **MODIS and VIIRS fire detections at nadir: modeling**

### VIIRS spatial resolution is higher that of MODIS; in general, VIIRS is expected to detect smaller fires at nadir



90% probability of detection; boreal forest; nadir view

# **Post-launch product evaluation**

- 24/7 script for data visualization
  - Designed for qualitative assessment of fire data
  - Used to identify major anomalies in data
- VIIRS x Aqua/MODIS intercomparison
  - Designed for qualitative assessment of VIIRS fire detection using near-coincident Aqua/MODIS data
  - Verify active fire product consistency on a per-pixel and/or grid basis
- Detailed data inspection tool
  - Used to assess quality of individual bands and the corresponding quality flags
- Collection and analysis of in-situ and airborne data
  - Explicit validation
- M13 SDR feedback
  - Aggregation, low/high gain
- Product improvements
  - Spatially explicit fire mask
  - FRP
  - VIIRS-specific algorithm changes



# **VIIRS-MODIS** Comparisons

- The following slides will provide examples of product performance over **four distinct ecosystems**:
  - Central Africa: tropical agricultural maintenance fires
  - SE Australia: bushfires
  - Central Asia: mid-latitude grassland and agricultural fires
  - Siberia: boreal forest
- <u>Visual expert analysis</u>, based on MODIS experience, has been used to identify performance shortcomings
- <u>Quantitative analysis</u> of near-simultaneous VIIRS and MODIS fire counts over a spatial is performed
- Further examples are available at the <u>JPSS VIIRS Active</u>
  <u>Fire Product website</u>:

http://viirsfire.geog.umd.edu/

## First light NPP VIIRS fire data

M5-M4-M3 RGB + IDPS Active Fire ARP

January 19, 2012 ~11:05 UTC



...followed by Aqua MODIS five minutes later

Band 1-4-3 RGB + MYD14

January 19, 2012 ~11:05 UTC



## NPP

### Satellite orbit tracks

April 3, 2012

Aqua



# MODIS and VIIRS fire detections at nadir: post-launch on-orbit data



VIIRS 03 April 2012 03:55UTC (SE Australia)

Gridded statistics: AA/BB/CC

AA – number of VIIRS fire pixels (red symbols)

BB – number of VIIRS fire pixels with overlapping Aqua/MODIS fire pixels

CC – number of Aqua/MODIS fire pixels (orange symbols)

151

# MODIS and VIIRS fire detections at nadir: post-launch on-orbit data



MODIS 03 April 2012 04:05UTC (SE Australia)

Gridded statistics: AA/BB/CC

AA – number of VIIRS fire pixels (red symbols)

BB – number of VIIRS fire pixels with overlapping Aqua/MODIS fire pixels

CC – number of Aqua/MODIS fire pixels (orange symbols)

## NPP

### Satellite orbit tracks

April 13, 2012

## Aqua

http://www.ssec.wisc.edu /datacenter/orbit\_tracks. html





## **NPP VIIRS**

### **Central Asia**

#### April 13 2012

#### 7:53 UTC

M5-M4-M3 RGB + IDPS Active Fire ARP



# Aqua MODIS **Central Asia** April 13 2012 8:18 UTC Band 1-4-3 RGB

MYD14



### VIIRS/overlap/MODIS



# vs. MODIS Central Asia

**VIIRS** 

### April 13 2012

Gridded statistics: AA/BB/CC AA – number of VIIRS fire pixels (red symbols) BB – number of VIIRS fire pixels with overlapping Aqua/MODIS fire pixels CC – number of Aqua/MODIS fire pixels (orange symbols)

8

## NPP

#### Satellite orbit tracks

June 16, 2012

## Aqua

http://www.ssec.wisc.edu /datacenter/orbit\_tracks. html





# Western Siberia June 16 2012 6:15 UTC

M5-M4-M3 RGB **IDPS Active Fire ARP** 



# MODIS Western Siberia June 16 2012

6:42 UTC

Band 1-4-3 RGB **MYD14** 



ື vs. ແ MODIS

**VIIRS** 

April 13 2012

Gridded statistics: AA/BB/CC AA – number of VIIRS fire pixels (red symbols)

BB – number of VIIRS fire pixels with overlapping Aqua/MODIS fire pixels

CC – number of Aqua/MODIS fire pixels (orange symbols)

# Aqua MODIS vs. Suomi NPP VIIRS



*Compatible orbital segments are determined by pixel sizes* 

VIIRSxMYD14 Fire Detection Frequency (**19 Jan <> 13 Feb**)

# Aqua MODIS vs. Suomi NPP VIIRS



Compatible orbital segments are determined by pixel sizes

VIIRSxMYD14 Fire Detection Frequency (**11 May <> 10 Jun**)

# Spurious fire detections





## One step further: use of VIIRS "I" bands



## **One step further: use of VIIRS "I" bands**

NPP VIIRS I-band fire mask: Western Siberia June 16 2012 6:15 UTC



# Fire characterization from S-NPP VIIRS

- M13 saturation temperature: 634K
  - very small percentage of fires to trigger saturation
  - Fire Radiative Power retrieval is possible
- M15 saturation temperature: 363K
  - small, but non-negligible percentage of fires triggers saturation of native resolution pixels
  - more complex characterization (i.e. smoldering ratio) be compromised
- Fire Radiative Power to be included in VIIRS active fire product

now a requirement for J1 and beyond

## **VIIRS active fire product development**



# Replacement algorithm (MODIS C6)

MODIS V6 code running on VIIRS data at LCF and in LandPEATE

2012 day 315(Nov. 10) C6V Repl. VIIRS Active Fires



•Spatially explicit fire mask and FRP - > new JPSS L1 Requirements Supplement •Additional data layers for CMG

•Ocean processing for gas flares, a new false-alarm rejection test over tropical regions, and dynamic potential fire thresholds

# IDPS algorithm (MODIS C4)

MODIS Version 4 algorithm running on VIIRS data

#### 2012 day 315(Nov. 10) C4V IDPS VIIRS Active Fires



•Sparse array of fire pixels – no spatially explicit fire mask

- •No FRP
- •Land-only processing

## Validation: remote sensing data



#### Spaceborne

•DLR: Technology Experimental Probe (TET-1) and Berlin Infrared Optical System (BIROS) •Use I-band to validate M-band

## Validation: in-situ data

#### **Ground Verification – qualitative assessment**

Use of coincident prescribed burns to verify active fire detection data using both I and M bands Engaging:

- Individuals (private land owners)
- State agencies (fire/forestry departments)
- Federal agencies (USDA Forest Service)
- International community







## Validation Activities: in-situ data

#### **Ground Verification – qualitative assessment**

Use of coincident prescribed burns to verify active fire detection data using both I and M bands

Fire information provided by USDA personnel

- Date and location of burn
- Area burned
- Fuel load & fuel consumption

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Name of Burn: <u>Rattlesn</u> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Coordinates: <u>33°3</u>      |
| and the strength of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | Burn Acres: <u>500</u>        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Hours of Active Burning:      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Fuel Loading:                 |
| CONTRACTOR OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Estimated Fuel Consump        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                               |
| 100 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Confirmed VIIRS acti | ive fire pixels               |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                               |
| and the second sec |                      |                               |
| 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                               |
| Kilometers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                               |

| National Forests in Alabama                                                                                 |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 2012 Rx Fire Smoke Monitoring                                                                               |  |  |  |  |  |  |  |  |  |  |
| Notification to NOAA NESDIS Satellite Analysis Branch                                                       |  |  |  |  |  |  |  |  |  |  |
| The following information should be forwarded to the NOAA NESDIS team on each burn the morning of the burn: |  |  |  |  |  |  |  |  |  |  |
| Date of Burn: <u>3/27/2012</u>                                                                              |  |  |  |  |  |  |  |  |  |  |
| Name of Burn: <u>Rattlesnake</u>                                                                            |  |  |  |  |  |  |  |  |  |  |
| Coordinates: <u>33°30′59″ Lat</u> <u>-85°43′07″ Lon</u> (decimal degrees)                                   |  |  |  |  |  |  |  |  |  |  |
| Burn Acres: 500                                                                                             |  |  |  |  |  |  |  |  |  |  |
| Hours of Active Burning: Start Time - 1000 (CST)                                                            |  |  |  |  |  |  |  |  |  |  |
| End Time: <u>1800 (CST)</u>                                                                                 |  |  |  |  |  |  |  |  |  |  |
| Fuel Loading:7.0 (tons per acre)                                                                            |  |  |  |  |  |  |  |  |  |  |
| Estimated Fuel Consumption:5.0 (tons per acre)                                                              |  |  |  |  |  |  |  |  |  |  |

VIIRS Active Fire **Product** Website

viirsfire.geog.umd.edu



## Whitewater-Baldy Fire Progression





# VIIRS fire data access

- Options:
  - NOAA CLASS Web
    - <u>www.class.noaa.gov</u>
  - NASA LAADSWeb
    - ladsweb.nascom.nasa.gov/data/search.html
  - NOAA CLASS ftp (anonymous)
    - ftp-npp.class.ngcd.noaa.gov
  - NASA LAADS ftp (anonymous)
    - ladsweb.nascom.nasa.gov
- Detailed instructions:

viirsfire.geog.umd.edu/Documents/VIIRS data tutorial.pdf



#### NPP EDR Product Maturity Levels

#### 1. Beta

- Early release product
- Minimally validated
- May still contain significant errors.
- Versioning not established until a baseline is determined.
- · Available to allow users to gain familiarity with data formats and parameters
- Product is not appropriate as the basis for quantitative scientific publications studies and applications
- 2. Provisional
- · Product quality may not be optimal
- Incremental product improvements are still occurring.
- Version control is in affect
- General research community is encouraged to participate in the QA and validation of the product, but need to be aware that product validation and QA are ongoing
- Users are urged to consult the EDR product status document prior to use of the data in publications
- · May be replaced in the archive when the validated product becomes available
- Ready for operational evaluation

#### 3. Validated

- Product performance is well defined over a range of representative conditions
- Ready for use by the Centrals and in scientific publications
- There may be later improved versions
- There are three validation stages (see next column)

Stage 1 Validation: Product performance has been demonstrated to comply with the specification using a small number of independent measurements obtained from selected locations, periods, and associated ground-truth/field program efforts.

Stage 2 Validation: Product performance has been demonstrated to comply with the specification over a widely distributed set of locations and periods via several ground-truth and validation efforts.

Stage 3 Validation: Product performance has been demonstrated to comply with the specification and the uncertainties in the product well established via independent measurements in a systematic and statistically robust way representing global conditions.

# SNPP EDR PRODUCT MATURITY DEFINITIONS

CLASS WILL START DISTRIBUTION OF PRODUCTS WHEN THEY REACH "BETA" MATURITY LEVEL

http://www.jpss.noaa.gov/science -maturity-level.html

#### JPSS program

# NOAA SUOMI NPP DATA ACCESS: CLASS



http://www.class.ncdc.noaa.gov "NPP products will be released to the user community over a time frame of several months. As products become available please go to the <u>Suomi NPP FAQ</u> to determine which products can be ordered. All newly released products will be 'beta'. Please see <u>Product Maturity</u> Level page to determine level of quality for each product."

•Frequently asked questions (FAQ)

•Product Maturity Levels

#### •Tutorial on Data Access

http://www.class.ngdc.noaa.gov/notification/pdfs/VIIRS\_Active%20Fire%20ARP\_Release\_Readme\_final.pdf

# **Online articles**

- First Fire Images from VIIRS (January 26, 2012) http://earthobservatory.nasa.gov/IOTD/view.php?id=77025
- NASA/NOAA Satellite Sees Western U.S. High Mountain Blazes (July 13, 2012)

http://www.nasa.gov/mission\_pages/NPP/news/west-blazes.html

- NASA Finalizes Contracts for NOAA's JPSS-1 Mission (August 10, 2012) http://www.nasa.gov/centers/goddard/news/releases/2012/12-066.html
- Complex Interactions between Wildfires and Lightning during Summer 2012 (December 12, 2012 by Scott Rudloski)

<u>http://essic.umd.edu/joom2/index.php/outreach-main/its-severe-blog/1229-complex-interactions-between-wildfires-and-lightning-during-summer-2012</u>

## Challenges

#### Product Latency for some users

- Early fire detection is critical
- CLASS latency is insufficient for NRT applications default latency is 6 hours
- DB processing is one possible solution at local scales
- need also direct access to IDPS output for non-DB users and for development / demonstration purposes (2 hour latency)

#### Algorithm Improvements

- Algorithm validation and development are still ongoing
- IDPS algorithm prior to Mx6.3 produced spurious scan-lines

#### • Provision > Validation (L1, L2, L3)

- MODIS as references serves as initial evaluation source for consistency (i.e. expected relative performance due to sensor differences)
- Collection of "truth" reference data is costly and logistically difficult
  - Airborne high resolution radiometers
  - In-situ data (mainly from field campaigns)
  - Reference satellite data (e.g. DLR German Space Agency TET / BIROS missions)

#### • Science and applications

- Algorithm and product suitability, continuity, long-term monitoring, reprocessing

## **Summary and Conclusions**

- **Early assessment** of the SNPP VIIRS fire product is **encouraging** 
  - Suomi NPP fire product is currently in the Intensive Calibration and Validation phase
- Active Fires product has been declared <u>Beta maturity</u> and is publicly available
  - Ready for user evaluation
- User Readiness and Proving Ground activities are reaching out various <u>domestic and international end users - goal is the continuity</u> <u>and enhancement of the MODIS product suite – LANCE, RR, FIRMS</u>
- Implementation of <u>DB processing systems</u> is underway domestically and internationally
  - Continuing coordination regarding product evaluation and algorithm versioning is critical
- More work is needed to implement <u>new MODIS algorithm</u> <u>components</u> (C6) and <u>sensor-specific tuning</u> in the VIIRS product, product content and product suite
  - Use of <u>I band DNB data</u> (detection, validation, fused products)
- <u>Validation</u> of global product remains crucial and will be challenging