GOFC-GOLD Regional Networks

Krishna Vadrevu NASA MSFC

GOFC-GOLD

- Implementation Teams (IT)
 - Land Cover Characteristics and Change
 - Fire Monitoring and Mapping
- Working Groups (WG)
 - Working Group on Reducing Emissions from Deforestation and Forest Degradation (REDD)
 - Group on Biomass Monitoring
- Regional Networks
 - Interface between IT and regional data users

GOFC-GOLD 20th Anniversary, Georgia, 2017

GOFC-GOLD Regional Networks

Figure 2. This map shows the currently active GOFC–GOLD RNs. 1. Southeast Asia Regional Research and Information Network (SEARRIN); 2. South Asia Regional Information Network (SARIN); 3. South Central European Regional International Network (SCERIN); 4. Red Latinoamerica de Teledeteccion e Incendios Forestales (RedLaTIF); 5. West African Regional Network (WARN); 6. Observatoire Satellital des Forets d'Afrique Central (OSFAC); 7. Miombo Network (MIOMBO); 8. Southern Africa Fire Network (SAFNET); 9. Central Asia Regional Information Network; 10. Caucasus Regional Information Network (CaucRIN); 11.Mekong Regional Information Network (MekRIN). See Table for a summary of the current and potential activities of each RN.

Summary of the GOFC–GOLD Twentieth-Anniversary Regional Networks Summit

Krishna Prasad Vadrevu, NASA's Marshall Space Flight Center, krishna.p.vadrevu@nasa.gov Giorgi Ghambashidze, Scientific-Research Center of Agriculture, georgia, ggiorgi.ghambashidze@srca.gov.ge Cheikh Mbow, START International, Inc., cmbow@start.org David Roy, South Dakota State University, david.roy@sdsu.edu Martin Herold, Wageningen University, Netherlands, martin.herold@wur.nl Tony Janetos, Boston University, ajanetos@bu.edu Chris Justice, University of Maryland, College Park, cjustice@umd.edu Garik Gutman, NASA Headquarters, ggutman@nasa.gov

Introduction

Global Observation for Forest and Land Cover Dynamics (GOFC–GOLD) is a coordinated international program working to provide ongoing space-based and *in situ* observations of the land surface to support sustainable management of terrestrial resources at different scales. The GOFC–GOLD program acts as an international forum to exchange information, coordinate satellite observations, and provide a framework for and advocacy to establish long-term monitor-

Table. (cont.) List of GOFC RNs, their current research foci, and new opportunities. (See caption of accompanying Figure for expansion of RNs.) The information contained in this table summarizes content from presentations by a representative of each RN during the summit. The full presentations can be viewed at the URL referenced in the Introduction.

Regional Network	Current Foci	New Opportunities		
	Crop-type and -area mapping, and yield forecasting	Strengthening regional		
SARIN	 Crop water-requirements analysis 	contacts in the region		
	 Drought assessments and early warning 	 Capacity building specific to agriculture 		
	 Agricultural fires and pollution mitigation 	and water resources		
	 LCLUC with respect to agriculture 	 Evaluating, testing, and 		
	 Capacity-building and training activities with respect to remote sensing of agriculture and water resource 	validating different LCLUC algorithms		
	 Providing satellite fire data products 	Field validating satellite		
	 Remote-sensing-based capacity building and training 	fire products		
	 Validating new satellite fire products 	 Developing hre danger rating training for the region 		
SAFNET	 Supporting national and regional fire-policy development 			
	 Refining fire service—developed as a part of Monitoring for Environment and Security in Africa (MESA) 	 Enhancing MESA fire services 		
	 Refining Advanced Fire Information Systems (AFIS), useful for near-real-time fire monitoring 	 Engaging more academic institutions in the region 		
	Developing land-cover maps for the entire Caucasus region			
	· Focusing on forest and agricultural LCLUC issues			
CaucRIN '	Performing regional whole-basin LCLUC assessment for Kura River Not Applicable (Not formed network)			
	 Conducting planned meeting and training activities—including developing a web portal 			
	· Focusing on the water, food, and energy nexus	N. A. K. U. M. L		
MekRIN "	 Addressing drivers, processes and impacts linking LCLUC to dams in the Mekong region 	formed network)		
	 Assessing forest changes: e.g., disturbances, biomass production, forest LCLUC, and driving forces 	 Addressing LCLUC specific to land abandonment and urban expansion Validating and verifying regional LCLUC methods and products 		
SCERIN	 Assessing LCLUC and climate change 			
Jeriar	 Validating and verifying data products to support current and future satellite missions 			
	 Conducting LCLUC water management (i.e., in watersheds, catchments, dams) 			
RedLATIF	Characterizing fires using remote sensing	Building expertise in Earth observations data		
	 Quantifying agricultural fires and emissions 	processing and validation		
	 Addressing lightning fires and their impact 	Generating cloud-		
	Assessing specific LCLUC impacts on deforestation	processing-based fire data products		
WADN	Satellite remote sensing of fires	 Examining LCLUC relating to slash-and- 		
WARIN	 Calibrating and validating fire products 	burn agriculture		
	Quantifying fire emissions	 Performing agricultural land-use-change studies 		

• Of the 11 networks, 6 networks showing interests in Fires

SAFNETRedLATIF

SEARRIN

- WARN
- Miombo

GOFC-GOLD Website Update

GOFC-GOLD FAO website - very old info – not actively updated) - (contacted Dough Muchoney and shut it down)

GOFC-GOLD – Fire-IT website – <u>www.gofc-fire.umd.edu</u>

GOFC-GOLD – Land Cover IT website – http://www.gofcgold.wur.nl/

GOFC-GOLD – START website https://start.org/programs/gofc-gold/

Regional Networks Information is being posted at GOFC-GOLD Fire website;

Consistency is needed !

IOME RESOURCES DOCUMENTS MEETINGS REGIONAL NETWORKS CONTACT

New GOFC-GOLD Website being Developed <u>https://gofcgold.org/</u>

(Domain name already purchased)

-It will have Land, Fire and Regional Network Information / Links at one site

Major change w.r.t. Regional Networks – All RN leads will have access to update their own Network Pages Directly !

Updates from SEARRIN and SARIN

- Both network researchers are represented in the annual + thematic meetings of South/Southeast Asia Research Initiative (SARI) – LCLUC
- Due to funding issues, we are combining events under one umbrella.
- Dedicated Fires/Biomass Burning sessions involving Regional Scientists for 1.5-days;
- Funding is for mostly Meetings + Trainings through JAXA NIES (since 7-years and will continue)

Local Host

University of Philippines Institute of Environmental Science and Meteorology

Sponsors and Partners

Quezon city, Philippines

28-30th May, 2018

200-participants 3-day meeting with sessions on LCLUC, Agriculture and Land-Atmopsheric Interactions

1.5-day - Land Atmospheric Interactions – Parallel sessions

3-day training with 100participants (31 May + 1, 2nd June)

Brief History of INSAT Satellites

- ★ Satellite Meteorology in IMD really started in 1982 with the launch of INSAT-1A which was a multipurpose satellite meant for services to Meteorology, Television and Communication. Before that , Indian meteorologists were using analog imageries received from U.S. Polar orbiting satellites series of TIROS-N.
- Many satellites for meteorological purposes were launched after the launch of INSAT-1A as given below:
- INSAT-1A 10 April 1982
- Two Channel VHRR
- INSAT-1B 30 August,1983
- INSAT-1C 21 July 1988
- INSAT-1D 12 June,1990
- INSAT-2A 10 July, 1992
- INSAT-2B 23 July,1993
- INSAT-2E 03 April 1999
- KALPANA-1 12 Sept.2002
- INSAT-3A 10 April 2003
- INSAT-3D 25 July, 2013

• <u>INSAT-3D – 26 July,2013 --- 6 channel imager and 19 channel sounder</u>

C-Band Transponders mainly for communication

Some with Meteorological Observations

Three Channel VHRR

INSAT-3D - India's Advanced Weather Satellite

India's advanced weather satellite INSAT-3D was launched in the early hours of July 26, 2013 from Kourou, French Guyana, and has successfully been placed in Geosynchronous orbit.

It carries four payloads

➢Imager (Six Channels)

➢Sounder (Nineteen Channels)

>Data Relay Transponder(DRT)

Satellite Aided Search and Rescue

Most of the products are ingested by Indian Meteorological Department (IMD) - National Centre of Medium Range Weather Prediction (NCMRWF).

European Center of Medium range Weather Forecast (ECMWF) and United Kingdom Meteorological Office (UKMET) use INSAT-3D derived atmospheric winds in their global models.

Imager (Six Channels)

Spectral Band	Wave- length(µm)	Ground Resolution
Visible	0.55-0.75	1 km
SWIR	1.55-1.70	1 km
MIR	3.80-4.00	4km
WV	6.50-7.10	8km
TIR1	10.2-11.3	4km
TIR2	11.5-12.5	4km

Generates images of the earth disk in every 26 minutes

INSAT-3D Sounder Channels Characteristics						
Detector	Ch. No.	ا _د (mm)	n _c (cm⁻¹)	NE∆T @300K	Principal absorbing gas	Purpose
	1	14.67	682	0.17	CO2	Stratosphere temperature
	2	14.32	699	0.16	CO ₂	Tropopause temperature
	3	14.04	712	0.15	CO2	Upper-level temperature
Long wave	4	13.64	733	0.12	CO ₂	Mid-level temperature
	5	13.32	751	0.12	CO ₂	Low-level temperature
	6	12.62	793	0.07	water vapor	Total precipitable water
	7	11.99	834	0.05	water vapor	Surface temp., moisture
	8	11.04	906	0.05	window	Surface temperature
	9	9.72	1029	0.10	ozone	Total ozone
Mid wave	10	7.44	1344	0.05	water vapor	Low-level moisture
	11	7.03	1422	0.05	water vapor	Mid-level moisture
	12	6.53	1531	0.10	water vapor	Upper-level moisture
	13	4.58	2184	0.05	N ₂ O	Low-level temperature
Short wave	14	4.53	2209	0.05	N ₂ O	Mid-level temperature
	15	4.46	2241	0.05	CO2	Upper-level temperature
	16	4.13	2420	0.05	CO ₂	Boundary-level temp.
	17	3.98	2510	0.05	window	Surface temperature
	18	3.76	2658	0.05	window	Surface temp., moisture
Visible	19	0.695	14367	-	visible	Cloud

19 channel Sounder, with 18 narrow spectral channels in short-wave infrared, middle infrared and long wave infrared regions and one channel in the visible region; Signals every 1-hour

Satellites for Greenhouse Gases Observation (Column observations)

ENVISAT / SCIAMACHY	ESA	2002 -2012	CO2, CH4	
GOSAT	Japan	2009 -	CO2, CH4	FTS
OCO-2	US	2014 -	CO2	Grating
GHGSat-D/CLAIRE	GHGSat (Canada)	2016 -	CO2, CH4	Fabry–Pérot
TanSat	China	2016 -	CO2	Grating
Sentinel-5p / TROPOMI	EC	2017 -	CH4	
FY-3D / GAS	China	2017 -	CO2, CH4	
GF-5 / GMI	China	2018 -	CO2, CH4	Spatial Heterodyne
GOSAT-2	<mark>Japan</mark>	<mark>FY2018 -</mark>	<mark>СО2, СН4</mark>	FTS
ISS / OCO-3	US	2019 -	CO2,	Grating
MicroCarb	France	2021 -	CO2	
MERLIN	France/ Germany	2021 -	CH4	Laser
GeoCARB	US	2022-	CO2, CH4	Geostationary, Grating
GOSAT-3	Japan	2022 -	?	?
Sentinel 7	(EC)	2025 -	CO2	Constellation
ENVISAT (2002-2012)	GAT (2009-) OCO-2 (20	14-) G	HGSat-D (2016-)	TanSat (2016-) Sentinel 5p (2017-)
FY-3D (2017-) GF-	GOSA 5 (2018-)	T-2 (FY2018-)	OCO-3 (2019 -)	MicroCarb (2021-) MERLIN (2021-)

Almost 10-years of continuous CO2 data

sources.

Item	GOSAT-2	GOSAT	
Observed greenhouse gases	CO ₂ , CH ₄ , O ₃ , H ₂ O, CO, NO ₂	CO ₂ , CH ₄ , O ₃ , H ₂ O	
Instruments	1. FTS (Fourier Transform Spectrometer) 2. Imager	1. FTS 2. Imager	
LTAN (Local Time on Ascending Node)	13:00 ± 0:15 hr	13:00 ± 0:15 hr	
Orbital altitude	613 km	666 km	
Revisit time	3 days (may be increased)	3 days	
TANSO-FTS (Thermal And I	Near infrared Sensor for carbon Observatior	n - Fourier Transform Spectrometer)	
Coverage	Cross-track: ±35°, Along-track: ±40°	Cross-track: ±35°, Along-track: ±20°	
Sampling	About 160 km interval, (5 points in the CT)	About 160 km interval	
IFOV	10.5 km	10.5 km	
Spectral ranges	1) 0.75-0.77 μm, 12,900-13,200 cm ⁻¹ (P/S) (O ₂ A)	1) 0.75-0.77 μm, 12,900-13,200 cm ⁻¹ (O ₂ A)	
	2) 1.59-1.67 $\mu m,~6,000\text{-}6,300~\text{cm}^{-1}~(\text{P/S})$ $(\text{CO}_2,\text{CH}_4)$	2) 1.59-1.67 µm, 5,800-6,400 cm ⁻¹ (CO ₂ ,CH ₄)	
	3) 2.04-2.08 $\mu m,$ 4,800-4,900 cm $^{-1}$ (P/S) (CO_2)	3) 2.04-2.08 µm, 4,800-5,200 cm ⁻¹ (CO ₂)	
	4) 2.33-2.38 $\mu m,$ 4,200-4,300 cm $^{-1}$ (CO) 5) 5.5-14.3 $\mu m,$ 700-1,800 cm $^{-1}$ (CO $_2, CH_4, O_3)$	4) 2.33-2.38 μm, 700-1,800 cm ⁻¹ (CO ₂ ,CH ₄ ,O ₃)	
Sampling duration	4 s	4 s	
Function	Intelligent pointing	-	
Spectral resolution	0.2 cm ⁻¹	0.2 cm ⁻¹	
SNR	>400 (Band 1) >300 (Band 2 to 5) @SZA=30°, albedo=0.3)	>300	
TANSO-CAI (Thermal Ar	d Near infrared Sensor for carbon Observa	tion - Cloud and Aerosol Imager)	
Spectroscopic System	Band pass filter and grating	Band pass filter	
Spectral ranges	1) 322-450 nm (1 nm step) 2) 664-684 nm (eliminated ?) 3) 860-880 nm (eliminated ?) 4) to be eliminated	1) 370-390 nm 2) 664-684 nm 3) 860-880 nm 4) 1555-1645 nm	

Improved re-visit time to 3 days (from 6-days)

Improved resolution TANSO cloud imager

Band 1-3: 500 m, Band 4: 1500 m,

Mission requirements	GOSAT	GOSAT-2		
	Uncertainty reduction of the fu	iture forecast		
1. Concentration measurement precision	4 ppm (CO ₂) 34 ppb (CH ₄) Observational period: 3 month - 1,000 km mesh (terrestrial region)	0.5 ppm (CO ₂) 5 ppb (CH ₄) Observational period: 1 month - 500 km mesh (terrestrial region) - 2,000 km mesh (ocean)		
2. Estimation accuracy of flux	Reduce the estimation error on the sub- continental scale to half compared with the one estimated using only ground observation data	Estimate the monthly net fluxes with the accuracy of ±100%. Use of 1,000 km mesh (terrestrial region) and 4,000 km mesh (ocear		
	Monitoring of greenhouse ga	s emissions		
3. Expansion of the observation gases	-	Examine the feasibility of the calculation of the anthropogenic emission with the observation of the correlated material such as CO and NO ₂		
4. Improvement of the natural emission estimation accuracy	(Chlorophyll Fluorescence observation as a result)	Investigate the correlation between the distribution of greenhouse gases and the vegetation activity		

Table 1: Observational requirements for the GOSAT and GOSAT-2 missions

7-SEAS activities since 2007 11 workshops and training courses **2007 VBBE** (Virtual BB Experiment) 2012 Cruise mission in southern SE Asia In-situ Experiments in northern SE Asia: Phase I (2010-2012) 2010 Dongsha Experiment 10 2011 Son La Campaign I 10 2012 Son-La Campaign II 1º **Phase II (2013-2015)** 2013 BASELInE I 2014 BASELnE II 2015 BASELInE III

Phase III (2016-2018): Data analysis and network

2018.05.28, Manila

raiagiapii

1.20

Drawing

Luiung

VOICE

7-SEAS Instrumentation

GHG measurement data in a GAW Station in Indonesia (in Bukit Koto Tabang, West Sumatera, Indonesia)

West Sumatera

2014-2018

GHG measurements – 52 Monitoring Stations in Malaysia

*ASMA = Alam Sekitar Malaysia

Chiang Mai, Thailand

Consistent and year-long mixing layer height measurements with LiDAR in the mountain valley of Chiang Mai

AERONET AOD Datasets

Country	Total station	Urban stations	Rural stations	Detail
Taiwan	7	5	2	Chen-Kung_Univ, Lulin, Douliu, Douliu, Douliu, EPA-NCU, Taipei_CWB
Indonesia	6	3	3	Bandung, Jambi, Makassar, Makassar, <u>P</u> alangkaraya, Pontianak
Laos	2	1	1	Luang Namtha, Vientiane
Malaysia	2	2	0	Kuching, USM Penang
Philippines	3	1	2	El Nido Airport, Manila Observatory, ND Marbel Univ
Singapore	1	1	0	Singapore
Thailand	5	3	2	Chiang Mai Met Sta, GOT Seaprism, Songkhla Met Sta, Silpakorn Univ, Ub on Ratchathani
HongKong	1	1	0	Hong Kong PolyU
Vietnam	4	1	3	Bac_Lieu, NGHIA_DO, Son_La, NhaTra ng

3-new stations; Dibrugarh, North East India; and Calicut, Kerala, Mandalay, Myanmar

L. Kiely

Laura Kiely¹, Dominick Spracklen¹, Stephen Arnold¹, John Marsham¹, Carly Reddington¹, Luke Conibear¹, Christoph Knote², <u>Mikinori</u> Kuwata³, Sri Hapsari Budisulistiorini³

1. Institute of Climate and Atmospheric Studies, University of Leeds; 2. Ludwig-Maximilians University, Munich; 3. Nanyang Technological University, Singapore

WRF-Chem modelling -*GFED peat emissions could be underestimated by a factor of 3*

UNIVERSITY OF LEEDS

Next SARI -South + Southeast Asia GOFC networks meeting in Malaysia 22-24th July 2019 (meeting) 25-27th July, 2019 (training)