

European Commission (EC), **GOFC GOLD Fire Implementation Team (GOFC Fire IT)**

Fire Danger Enhancement and Calibration

Domingos Xavier Viegas, L. M. **Ribeiro and D. Alves** ADAI, University of Coimbra Portugal

Maryland 1st October 2018

FCTUC FACULDADE DE CIÊNCIAS UNIVERSIDADE DE COIMBRA

undo Social Europ

www.adai.pt/ceif | www.facebook.com/ceif.adai

Outline

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Validation
- 5. Conclusion

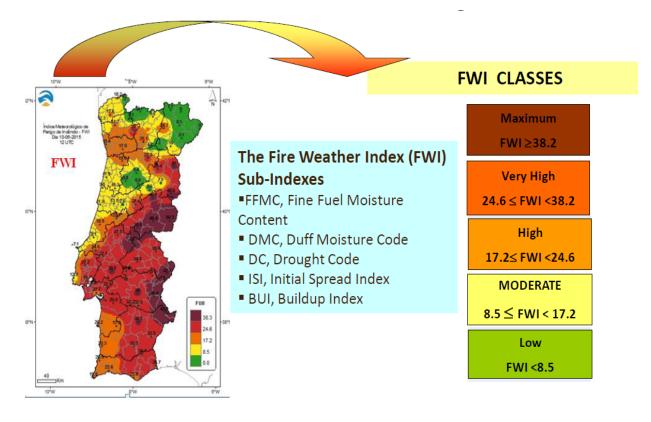
Introduction

- This work was carried out by request of the JRC with the objective of providing a calibration of the Canadian Fire Danger Rating System for the EC countries.
- This calibration had to be applied operationally in the EFFIS System and therefore should be performed automatically by the computer system.

- We used the FWI output of the CFFDRS to assess the risk of having a large number of fire or a large area burned in a given day for area units in the EU territory.
- The FWI is based entirely in meteorological data, but if we use historical data on fire occurrence (number of daily fires and burned area) we can perform a calibration of the system for each area unit.

• This calibration is based on the existence of a monotonic relationship between the two pairs of variables:

NF= f_1 (FWI) and BA= f_2 (FWI).


We checked the validity of these conditions and found that it works better for f1.

1st October 2018

FWI & Portuguese Risk Indexes

Our team proposed and applied an original calibration system that was initially developed in collaboration with the Portuguese Institute of Meteorology (IPMA) in 1999 and extended to various other regions.

	FWI	Limit Valu	e for ea	ch class of fi	re danger
	Low	Moderate	High	Very High	Maximum
Viana do Castelo	<10	15	30	45	>45
Braga	<10	15	30	50	>50
Porto	<8	15	25	40	>40
Vila Real	<13	20	30	50	>50
Bragança	<23	30	45	55	>55
Aveiro	<10	17	23	40	>40
Viseu	<15	25	45	70	>70
Guarda	<8	15	25	50	>50
Coimbra	<15	22	30	45	>45
Leiria	<15	25	30	50	>50
C. Branco	<20	35	45	60	>60
Lisboa	<25	35	50	70	>70
Santarém	<25	33	50	60	>60
Setúbal	<30	40	55	70	>70
Portalegre	<35	50	65	75	>75
Évora	<40	50	65	75	>75
Beja	<40	50	65	75	>75
Faro	<30	4	60	75	>75

Tab 1: FWI Calibration for each district of Portugal; Source: Viegas, et al., 2004 **Fig 2: FWI Calibration for the entire Portuguese territory;** Source: Novo, et al.,2015

www.adai.pt/ceif

Methodology

- We considered the territory of Europe divided in administrative units that are designated as NUTS3.
- The data used for calibration was for the period from 2006-2015. Meteorological data existed for the entire period with great detail but historical fire data did not exist for all NUTS.

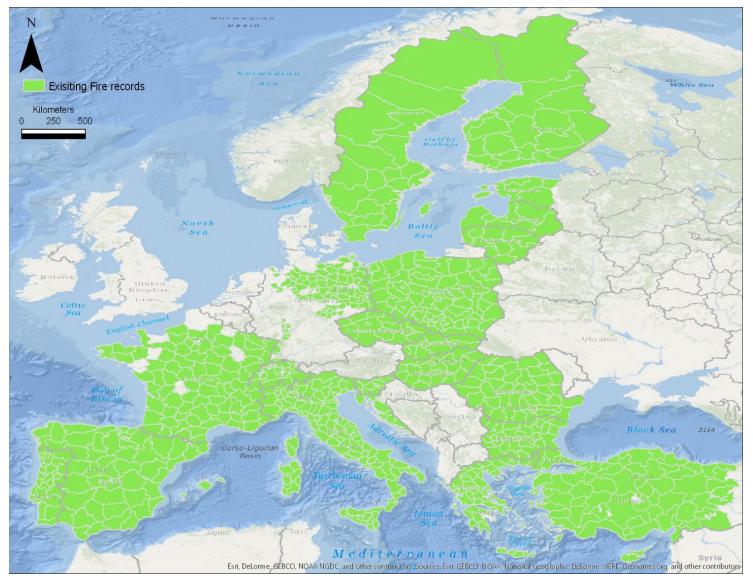
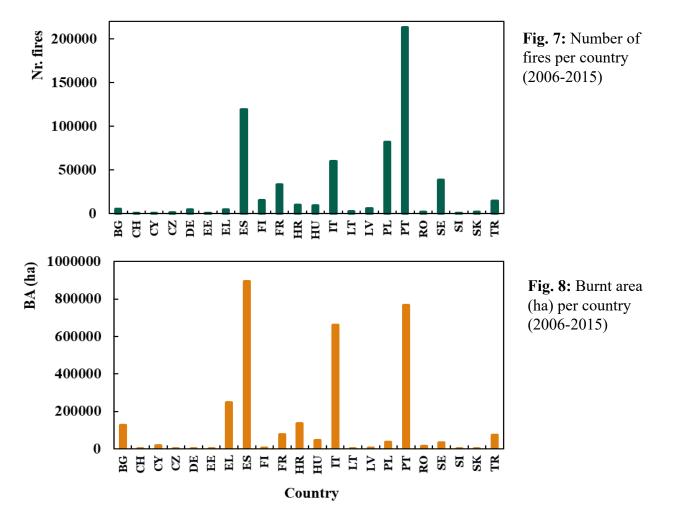


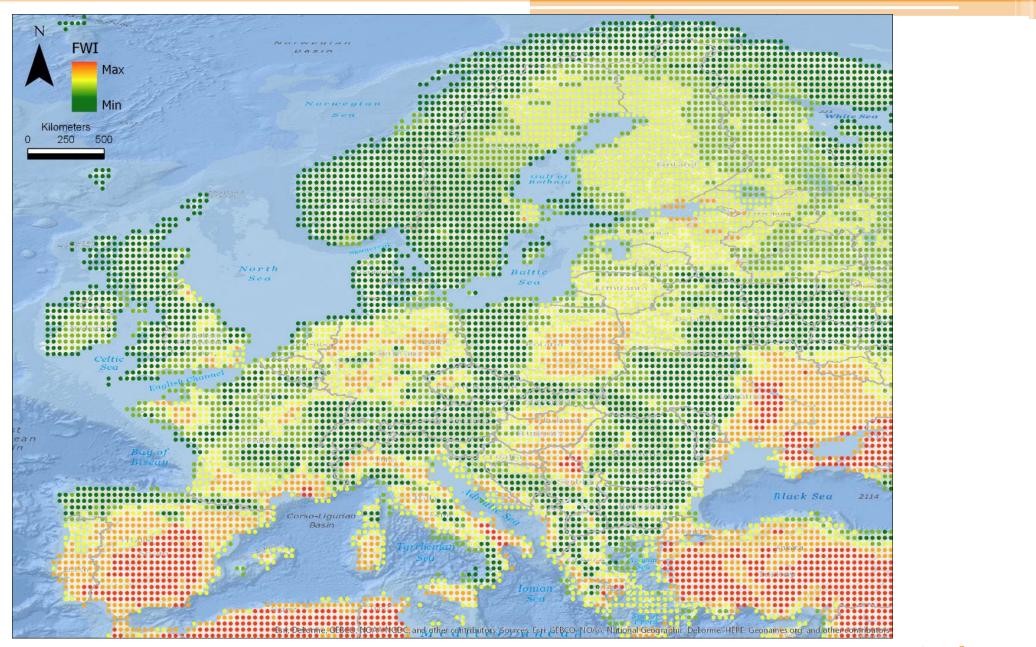
Fig 2. Map depicting the extent of the provided fire records

www.adai.pt/ceif


1st October 2018

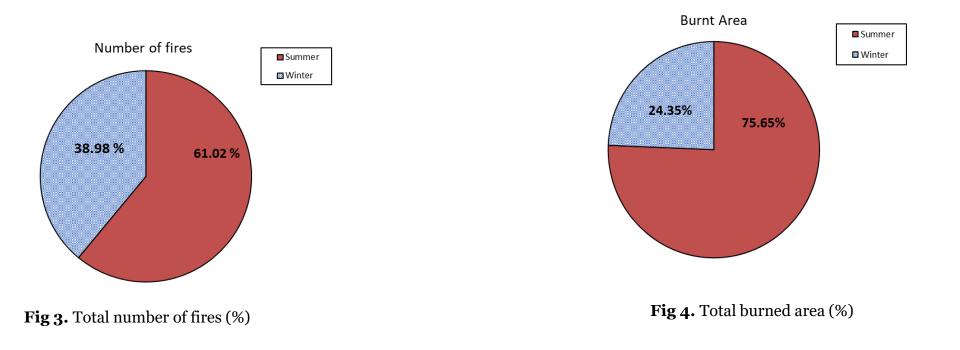
Methodology Steps Definition of the Study Area

22 countries were analyzed with their respective NUTS3 between 2006 and 2015.


	Country		Nr. NUTS	From	То	Years
1	Bulgary	BG	29	2006	2015	9
2	Switzerland	СН	24	2006	2014	8
3	Cyprus	CY	1	2006	2015	9
4	Czech Republic	CZ	14	2006	2008	2
5	Germany	DE	106	2006	2015	9
6	Estonia	EE	5	2006	2015	9
7	Greece E		50	2006	2011	5
8	Spain	ES	56	2006	2014	8
9	Filand	FI	18	2006	2015	9
10	France	FR	84	2006	2015	9
11	Croatia	HR	21	2006	2015	9
12	Hungary	ΗU	21	2006	2015	9
13	Italy	IT	111	2006	2015	9
14	Lithuania	LT	10	2006	2015	9
15	Latvia	LV	6	2006	2015	9
16	Poland	PL	66	2006	2015	9
17	Portugal	PT	28	2006	2015	9
18	Romania	RO	43	2006	2015	9
19	Sweden	SE	22	2006	2015	9
20	Slovenia	SI	12	2006	2015	9
21	Slovakia	SK	9	2006	2012	6
22	Turkey	TR	78	2006	2013	7

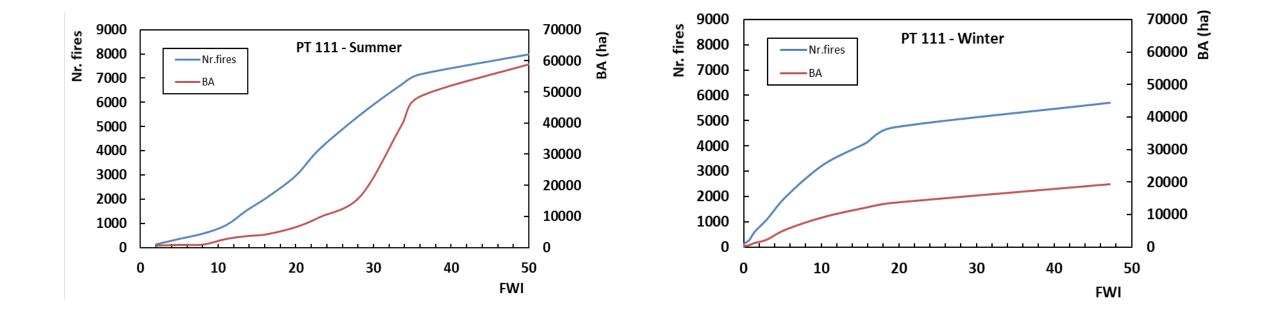
Tab.3: Countries analyzed with the respective time period

www.adai.pt/ceif

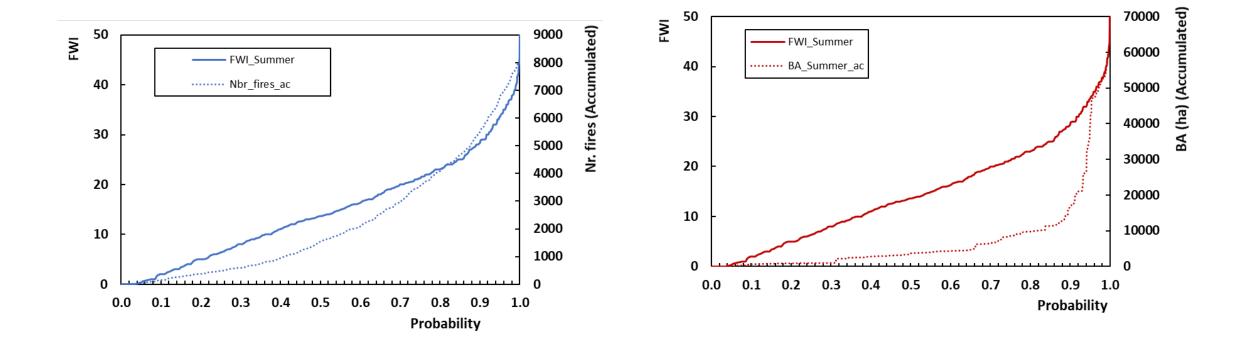


www.adai.pt/ceif

1st October 2018


Two Fire Seasons

- Calibration process for two different seasons:
 - Summer season: May 15th to September 30th; 5 fire danger classes
 - Winter season: October 1st to May 14th. 3 fire danger classes



• For each Region and Season we calculated the daily values of FWI, NF and BA, and obtained distributions like these for PT111:

• We can then set a probability of occurrence of values of FWI and the corresponding values of NF and BA:

• We can tabulate these values for each set of parameters:

Probability class	Maximum FWI (limit	Mean Values					
Class	of the class)	FWI	Nr. of fires	BA			
0.10	2.0	0.6	1.2	5.3			
0.20	5.0	3.4	1.8	1.8			
0.30	8.0	6.4	1.7	0.8			
0.40	11.0	9.5	2.8	14.6			
0.50	13.7	12.5	4.9	7.4			
0.60	16.3	14.9	4.4	5.0			
0.70	20.0	18.1	7.2	18.4			
0.80	23.1	21.4	8.9	25.5			
0.90	28.4	25.4	11.6	55.4			
0.95	33.6	30.8	20.0	366.9			
0.97	36.1	34.9	17.3	381.8			
1.00	51.2	39.4	23.7	295.0			

Example of results for PT111 (Summer)

www.adai.pt/ceif

• Using these probabilities we can establish the limits that define each class of danger:

	a. Sum	mer	b. Winter			
Risk Level	Risk class	Historical probability	Risk class	Historical probability		
1	Very Low	P < 0.30	Low	P < 0.50		
2	Low	$0.30 \le P < 0.60$	Moderate	$0.50 \leq P < 0.90$		
3	Moderate	$0.60 \le P < 0.90$	High	P ≥ 0.90		
4	High	$0.90 \le P < 0.97$	_	_		
5	Very High	P ≥ 0.97	_	_		

3. Results - Calibration of the Canadian System (Calibration tables)

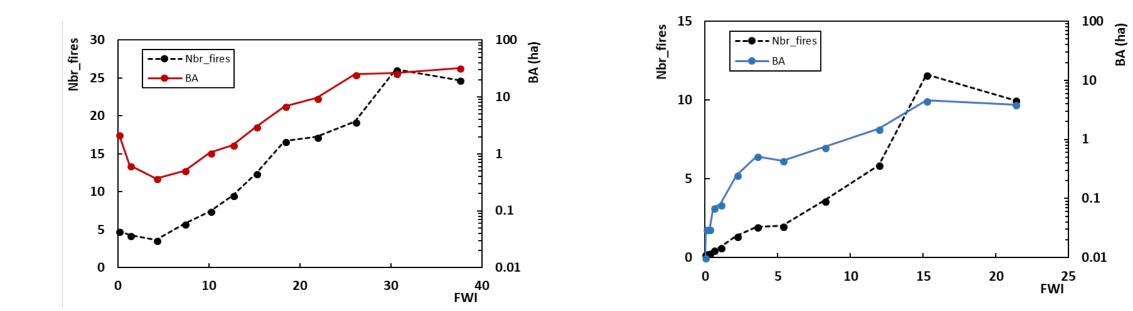
• The entire process, cycled through all the NUTS3 regions in the defined study area, resulted in two calibration tables, one for Summer and other for Winter.

	Country	NUTS_ID	Break_P_30	Break_P_60	Break_P_90	Break_P_97
1	BG	BG312	7.8	22	39.5	51
2	CH	CH023	0.9	5.6	13.9	19.6
3	CY	CY000	25.5	32	44.1	50.5
4	CZ	CZ041	2.8	9.6	20.6	27.6
5	DE	DE122	4.7	13	24.7	30.7
6	EE	EE001	1	4.3	11	19
7	EL	EL111	19.8	33.8	51.4	58.2
8	ES	ES411	28	39.2	52.8	62.5
9	FI	FI195	0.7	4.2	13.7	25
10	FR	FR213	6	15	29	38.7
11	HR	HR035	15.7	29.4	47.5	56
12	HU	HU222	8.4	19.1	35.3	45.6
13	IT	ITC34	0.6	6.4	17.4	22.9
14	LT	LT001	2.5	8.8	20.7	29.5
15	LV	LV003	2.1	7.4	19.4	29.4
16	PL	PL114	5.7	15	28	40.3
17	PT	PT114	6	13.8	24.1	32.5
18	RO	RO116	5.9	17	31.7	38.8
19	SE	SE122	1.6	8	21	29.2
20	SI	SI012	5	14.9	29	40
21	SK	SK022	6.1	16.3	29	37.5
22	TR	TR411	28.4	45.1	60.8	68.6

Calibration table for **Summer** (22 from 769 NUTS3)

Calibration table for Winter (22 from 769 NUTS3)

	Country	NUTS_ID	Break_P_50	Break_P_90
1	BG	BG312	1	16.3
2	CH	CH023	0.4	6
3	CY	CY000	12.4	30.2
4	CZ	CZ041	0.4	8.6
5	DE	DE122	0.7	9.1
6	EE	EE001	0.5	4.3
7	EL	EL111	2.2	15.2
8	ES	ES411	5.9	23.3
9	FI	FI195	0.2	1
10	FR	FR213	0.8	12
11	HR	HR035	3.3	18
12	HU	HU222	2.3	18.3
13	IT	ITC34	0.3	4.2
14	LT	LT001	0.3	8
15	LV	LV003	0.4	5.1
16	PL	PL114	0.8	12.6
17	PT	PT114	1.6	10.1
18	RO	RO116	0.9	15.9
19	SE	SE122	0.4	7
20	SI	SI012	1	13.3
21	SK	SK022	0.7	13.1
22	TR	TR411	4.6	23.5


www.adai.pt/ceif

1st October 2018

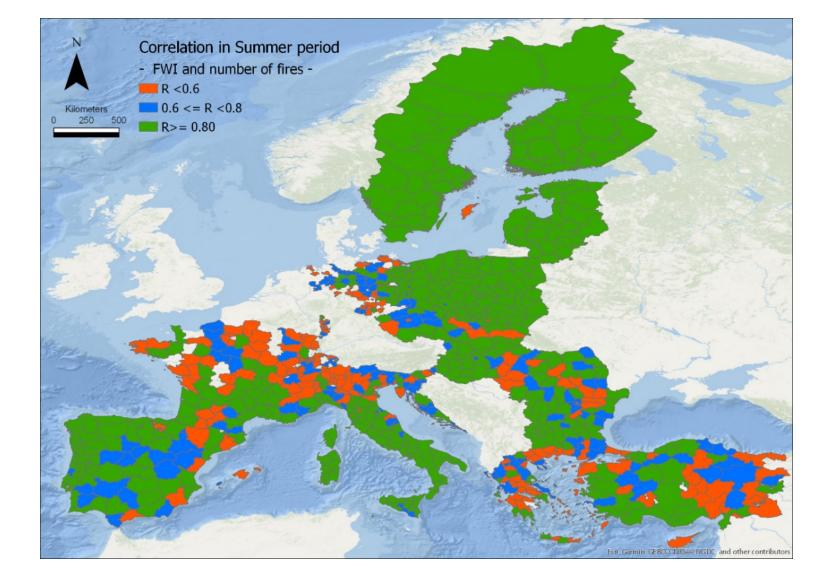
Validation

- In order to assess the existence of the well behaved functions f1 and f2 we calculated the corrrelation coefficient bwteen the pairs of variables testing a linear relationship for both.
- We did this for both functions but explored more extensively the case of f1.

R	Nbr_fires _{SUP}	$\overline{BA_{SUP}}$
Summer – PT114	0.97	0.91
Winter – PT114	0.95	0.92

www.adai.pt/ceif

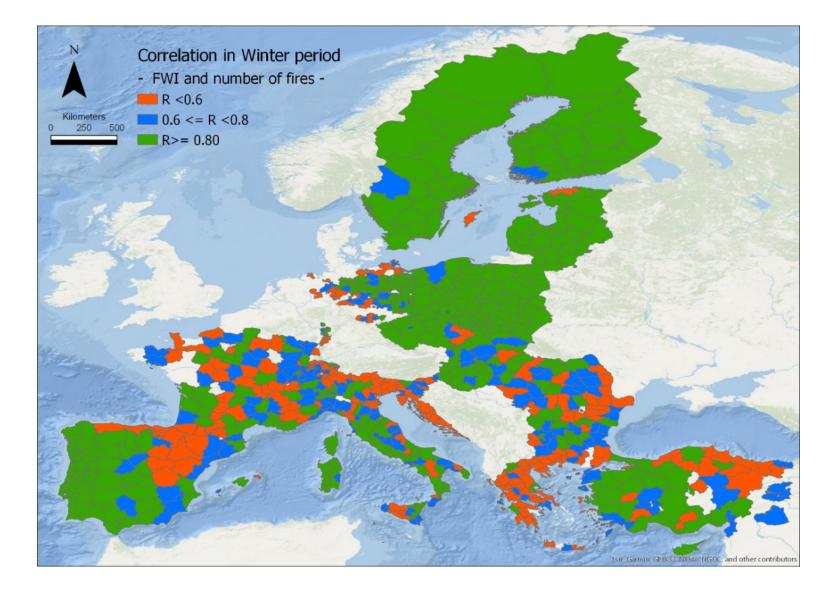
1st October 2018


- We considered the existence of three classes of values of R:
 - (A) $R \ge 0.8$ that were considered high correlation values;
 - (B) $0.8 > R \ge 0.6$ that were considered average correlation values;

(C) $0.6 > \mathbf{R} > 0$ that were considered low correlation values.

Class	Sum	imer	Winter		
А	414	55.4 %	354	48.0 %	
В	139	18.6 %	170	23.0 %	
С	194	26.0%	214	29.0 %	
Total	747	100 %	738	100 %	

www.adai.pt/ceif


Summer period

• Winter period

21

www.adai.pt/ceif

1st October 2018

• Class A Units R≥0.8

- -We selected the 15 cases with highest values of burned area and identified them as cases that deserve more attention because they correspond to "bad fire days".
- <u>Summer</u>: cases which the maximum value of the daily burned are exceeded 10000ha;
- -<u>Winter</u>: cases which the maximum value of the daily burned are exceeded 1000ha.

• Summer

Dof	NUTS	Dov	Risk	ETAZ I	$BA_{d,S,U}$	R	$BA_{T,S,U}$	$BA_{Y,S,U}$	$Med(BA_{Y,S,U})$	V
Ref.	NUIS	Day	Level	FWI _{d,S,U}	ha	K	ha	ha/year	ha/year	$Y_{T,U}$
1	SE125	31/07/2014	2	2	12807.0	0.96	13041.7	1304.2	14.4	10
2	TR611	31/07/2008	3	5	15822.2	0.95	21573.9	2696.7	555.9	8
3	ES413	19/08/2012	3	3	11664.7	0.85	39479.3	4386.6	2231.2	9
4	PT168	30/08/2009	3	9	9508.1	0.94	58392.2	5839.2	4457.9	10
5	ES512	22/07/2012	3	3	8770.3	0.89	11141.3	1237.9	41.5	9
6	BG341	26/08/2012	3	4	8147.6	0.91	15836.9	1583.7	481.8	10
7	ES523	28/06/2012	4	2	28880.1	0.95	51294.3	5699.4	307.1	9
8	EL254	23/08/2007	4	1	20700.0	0.93	20982.2	3497.0	31.8	6
9	PT118	09/07/2013	4	13	13729.6	0.90	84668.1	8466.8	6306.2	10
10	ITG25	23/07/2009	4	5	13488.0	0.98	21777.3	3111.0	1204.5	<u>7</u>
11	EL300	21/08/2009	4	2	9390.7	0.86	15740.1	2623.4	747.9	6
12	EL255	23/08/2007	4	2	9033.8	0.91	16607.8	2768.0	164.1	6
13	ITG26	23/07/2007	4	10	8066.8	0.91	20417.6	2916.8	2804.8	<u>7</u>
14	PT150	18/07/2012	5	5	21437.3	0.91	25932.1	2593.2	261.8	10
15	ES114	06/08/2006	5	64	10520.3	0.94	47724.7	5302.7	356.7	9

www.adai.pt/ceif

• Winter

Def	NILITO	Darr	Risk		$BA_{d,S,U}$	R	$BA_{T,S,U}$	$BA_{Y,S,U}$	$Med(BA_{Y,S,U})$	V
Ref.	NUTS	Day	Level	FWI _{d,S,U}	ha	ĸ	ha	ha/year	ha/year	$Y_{T,U}$
1	ES523	10/03/2006	1	2	2094.7	0.95	5103.0	567.0	184.6	9
2	ES521	24/01/2009	1	3	961.9	0.82	1916.0	212.9	100.5	9
3	ES419	28/02/2012	2	12	2522.0	0.82	24093.0	275.2	1594.1	9
4	PT161	02/04/2015	2	8	1575.3	0.95	2476.7	247.7	84.3	10
5	EL134	17/11/2011	2	1	1315.0	0.87	1646.8	274.5	18.4	6
6	ES413	11/03/2012	2	12	1131.1	0.95	33513.1	3723.7	2752.9	9
7	ES617	04/02/2012	2	1	797.7	0.92	1603.6	178.2	36.5	9
8	ES113	13/10/2011	3	46	6110.6	0.93	51835.6	5759.5	3757.7	9
9	PT118	03/10/2011	3	32	2161.0	0.97	33117.4	3311.7	1863.2	10
10	PT112	27/03/2012	3	15	1824.9	0.99	8109.7	811.0	464.9	10
11	FR813	02/10/2009	3	2	1190.4	0.83	2959.4	295.9	174.0	10
12	HU331	29/04/2012	3	4	1058.9	0.93	1957.5	195.8	66.2	10
13	PT164	28/03/2012	3	7	983.7	0.97	3571.6	357.2	66.9	10
14	ES111	31/03/2012	3	24	879.6	0.97	5760.2	640.0	479.7	9
15	PT165	29/03/2012	3	16	838.3	0.95	10777.5	1077.8	1029.4	10

www.adai.pt/ceif

- Class C Units R<0.6
 - We selected the following cases:
 - <u>Summer</u>: days with burned areas larger than 1000ha.
 - <u>Winter</u>: days with burned areas larger than 500ha.

• Summer

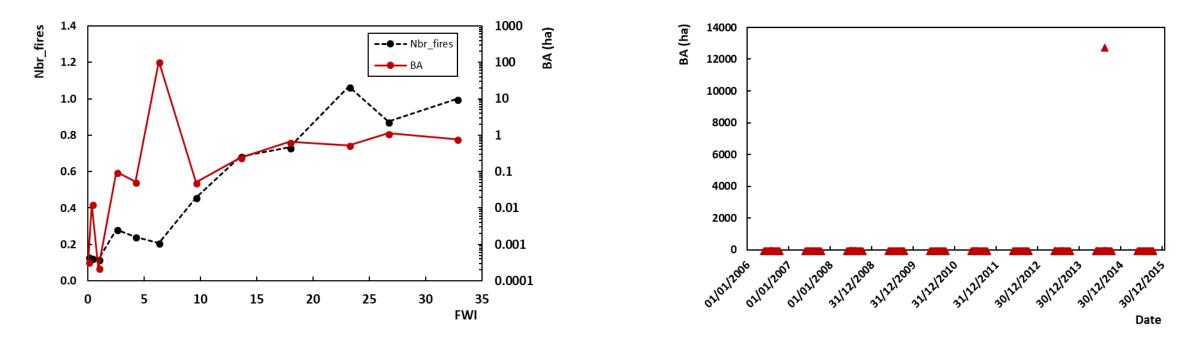
Ref.	NUTS	Day	Risk Level	FWI _{d,S,U}	BA _{d,S,U} (Daily)	R	BA _{T,S,U} (Total)	$BA_{Y,S,U}$	$Med(BA_{Y,S,U})$	Y _T
			Level	(Daily)	ha		ha	ha/year	ha/year	
1	EL233	24/08/2007	4	6	46368.6	-0.01	72248.5	12041.4	175.5	6
2	EL421	22/07/2008	2	1	13239.8	-0.19	13316.2	2219.4	2.1	6
3	ES522	29/06/2012	5	1	10613.3	0.45	18133.3	2014.8	97.9	9
4	ES617	30/08/2012	3	1	8037.1	0.31	12277.0	1364.1	416.9	9
5	EL122	25/07/2007	5	1	2916.6	0.53	3681.4	736.3	60.0	<u>5</u>
6	EL413	25/07/2007	3	1	2570.8	-0.24	2863.0	477.2	50.7	6
7	ES532	26/07/2013	5	2	2347.2	0.49	4020.3	446.7	25.3	9
8	CY000	12/08/2012	2	3	1891.5	0.43	17203.8	1720.4	1456.5	1(
9	EL125	24/07/2007	4	1	1709.1	0.01	1726.8	575.6	14.5	<u>3</u>
10	EL253	17/07/2007	3	1	1542.8	0.49	2334.8	467.0	24.9	<u>5</u>
11	EL132	25/07/2007	5	1	1534.2	0.46	3671.8	734.4	12.9	<u>5</u>
12	ES241	12/08/2006	2	1	1435.6	-0.67	2015.4	223.9	37.7	9
13	ES620	01/07/2012	3	1	1342.2	0.51	3230.7	359.0	136.4	9
14	TR222	30/07/2008	4	2	1304.0	0.54	1909.0	477.3	38.9	4
15	EL244	24/08/2007	3	1	1222.3	0.38	1643.6	273.9	63.4	6

www.adai.pt/ceif

• Winter

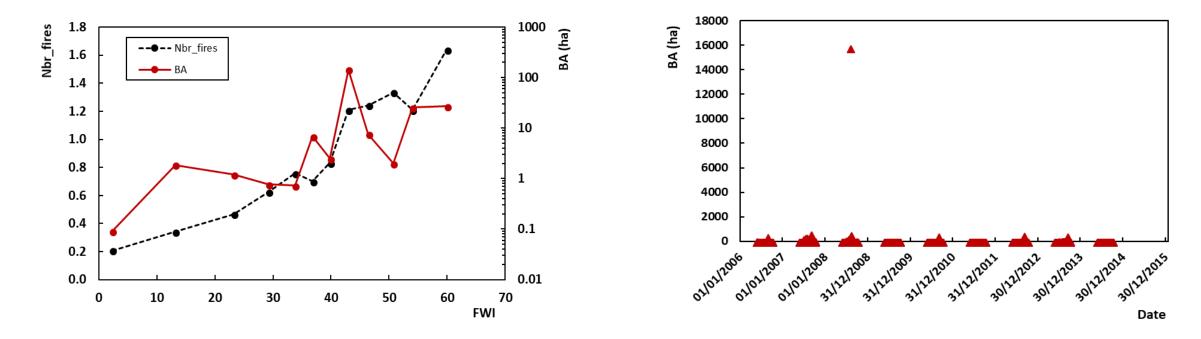
Ref.	NUTS	Day	Risk Level	<i>FWI_{d,S,U}</i> (Daily)	BA _{d,S,U} (Daily)	R	BA _{T,S,U} (Total)	$BA_{Y,S,U}$	$Med(BA_{Y,S,U})$	Y _T
			Levei	(Dally)	ha		ha	ha/year	ha/year	
1	ES241	08/03/2012	3	3	2734.1	0.13	3409.0	378.8	65.3	9
2	ES120	23/10/2011	3	55	2374.6	0.58	66682.7	7409.2	6461.7	9
3	ES130	27/03/2012	2	68	2146.5	-0.12	65930.1	7325.6	7652.6	9
4	HR034	19/02/2011	2	1	1318.0	0.04	7246.5	724.7	551.6	1(
5	EL434	20/04/2008	3	4	906.5	0.36	999.6	199.9	15.0	<u>5</u>
6	TR811	18/04/2012	2	5	840.1	0.50	955.2	119.4	17.0	8
7	HU311	07/04/2009	2	4	836.0	0.44	13846.2	1384.6	974.4	1(
8	ES243	17/03/2010	2	7	805.7	0.23	1887.3	209.7	116.3	9
9	HR035	19/02/2008	2	1	800.0	0.18	4717.0	471.7	332.6	1(
10	HR033	26/03/2012	3	1	632.9	-0.59	4409.8	630.0	349.4	7
11	HR032	27/03/2012	3	4	549.3	0.53	2069.1	206.9	74.3	1(
12	ES212	27/02/2010	2	7	511.1	0.49	1087.5	120.8	75.6	9

www.adai.pt/ceif

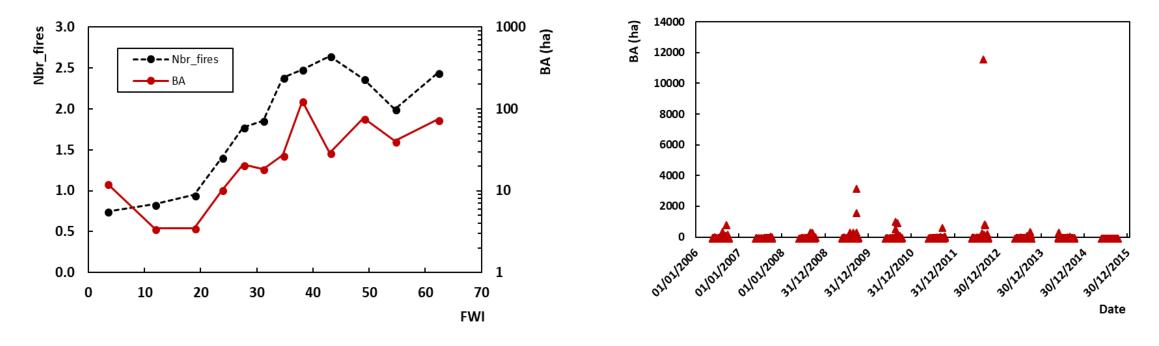

• Analysis of Large Burned Area Days (selected cases)

		NILITO	D	Risk	EIALI	$BA_{d,S,U}$	n	$BA_{T,S,U}$	$BA_{Y,S,U}$	$Med(BA_{Y,S,U})$	v
		NUTS	Day	Level	FWI _{d,S,U}	ha	R	ha	ha/year	ha/year	Y _{T,U}
Class A R≥0.8	Summer	SE125	31/07/2014	2	2	12807.0	0.96	13041.7	1304.2	14.4	10
		TR611	31/07/2008	3	5	15822.2	0.95	21573.9	2696.7	555.9	8
		ES413	19/08/2012	3	3	11664.7	0.85	39479.3	4386.6	2231.2	9
	Winter	ES523	10/03/2006	1	2	2094.7	0.95	5103.0	567.0	184.6	9
		ES521	24/01/2009	1	3	961.9	0.82	1916.0	212.9	100.5	9
		ES419	28/02/2012	2	12	2522.0	0.82	24093.0	275.2	1594.1	9
Class C R < 0.6	Summer	EL233	24/08/2007	4	6	46368.6	-0.01	72248.5	12041.4	175.5	6
		EL421	22/07/2008	2	1	13239.8	-0.19	13316.2	2219.4	2.1	6
		ES522	29/06/2012	5	1	10613.3	0.45	18133.3	2014.8	97.9	9
	Winter	ES241	08/03/2012	3	3	2734.1	0.13	3409.0	378.8	65.3	9
		ES120	23/10/2011	3	55	2374.6	0.58	66682.7	7409.2	6461.7	9
		ES130	27/03/2012	2	68	2146.5	-0.12	65930.1	7325.6	7652.6	9

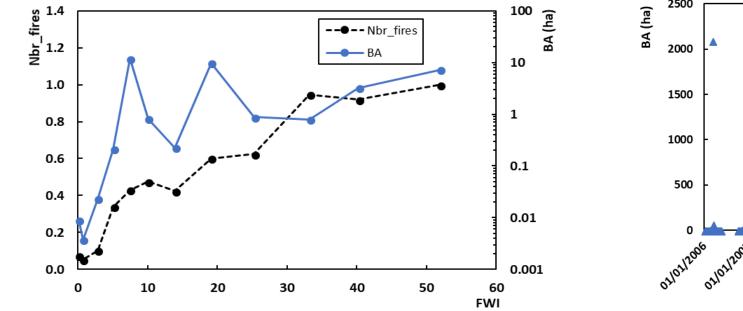
• Class A - Summer SE125 (31/07/2017):

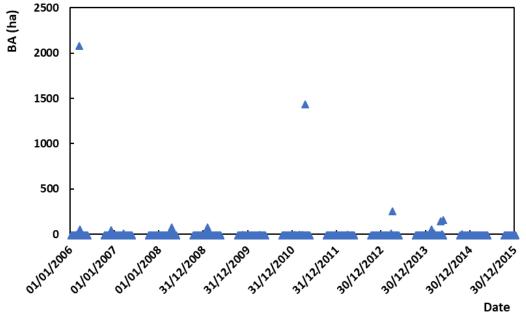

- Risk level: 2
- BA: 12807.0 ha

Class A - Summer
 TR611 (31/07/2008):


- Risk level: 3
- BA: 15822.2 ha

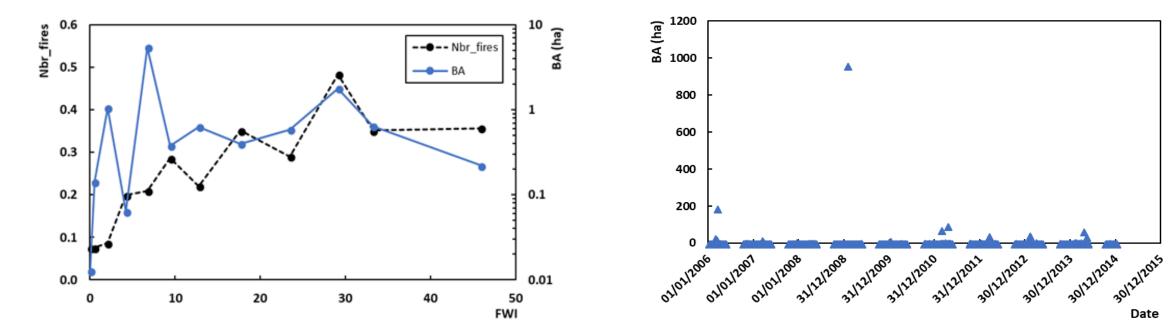
Class A - Summer ES413 (19/08/2012):


- Risk level: 3
- BA: 11664.7ha



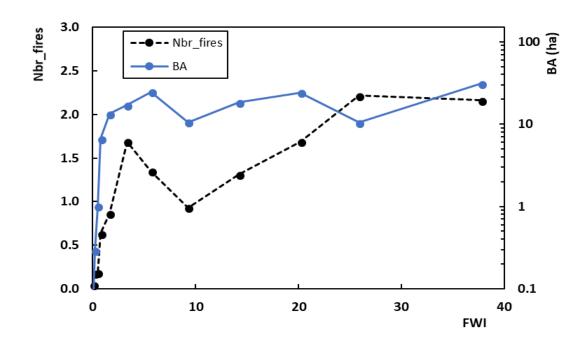
Class A - Winter ES523 (10/03/2006):

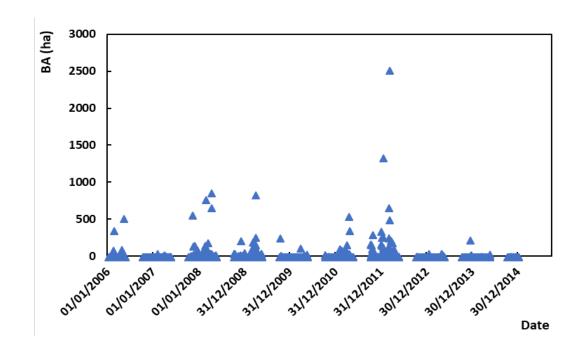
- Risk level: 1
- BA: 2094.7 ha



Class A - Winter ES521 (24/01/2009):

- Risk level: 1
- BA: 961.9 ha

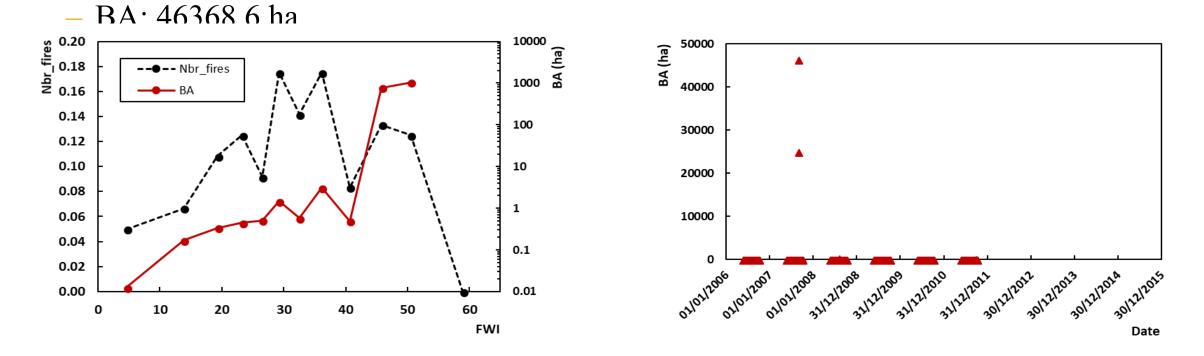




• Class A - Winter

ES419 (28/02/2012):

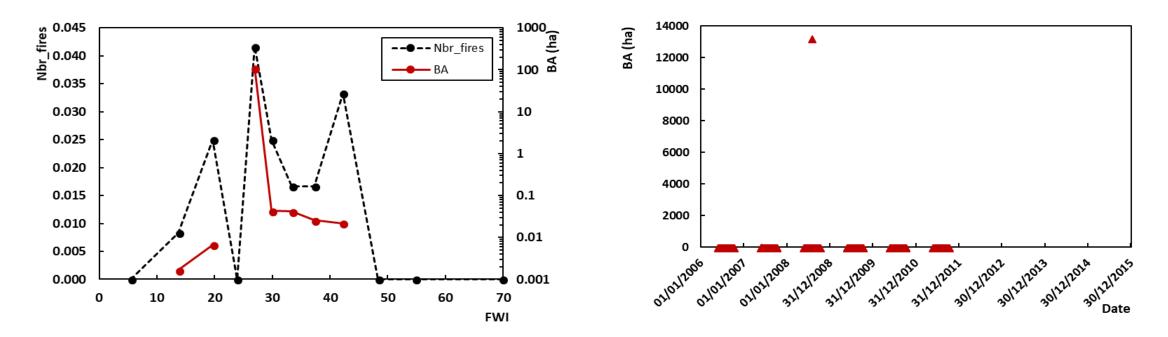
- Risk level: 2
- BA: 2522.0 ha



• Class C - Summer

EL233 (24/08/2007):

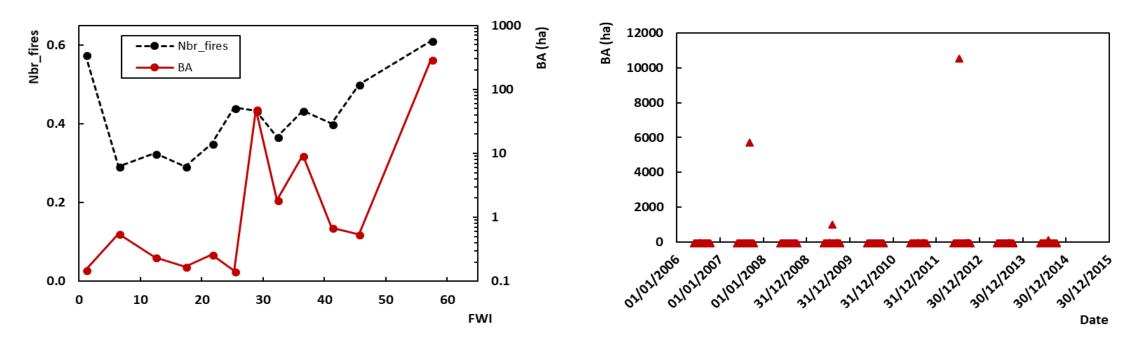
– Risk level: 4



• Class C - Summer

EL421 (22/07/2008):

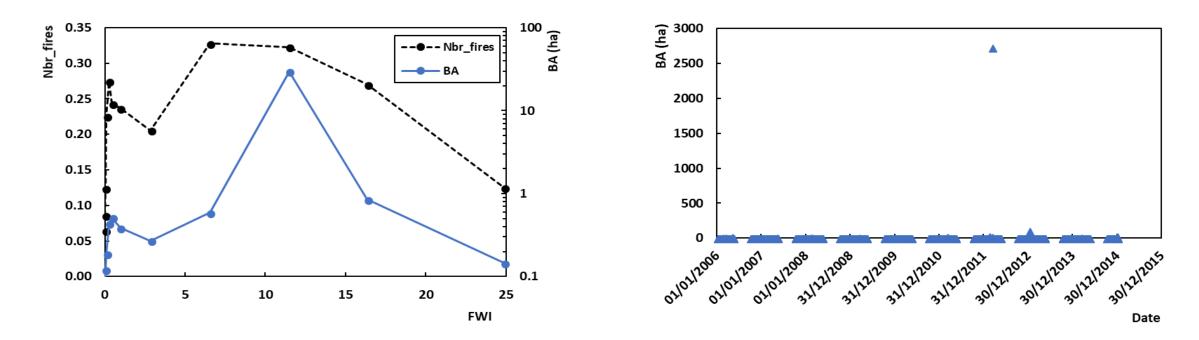
- Risk level: 2
- BA: 13239.8 ha



• Class C - Summer

ES522 (29/06/2012):

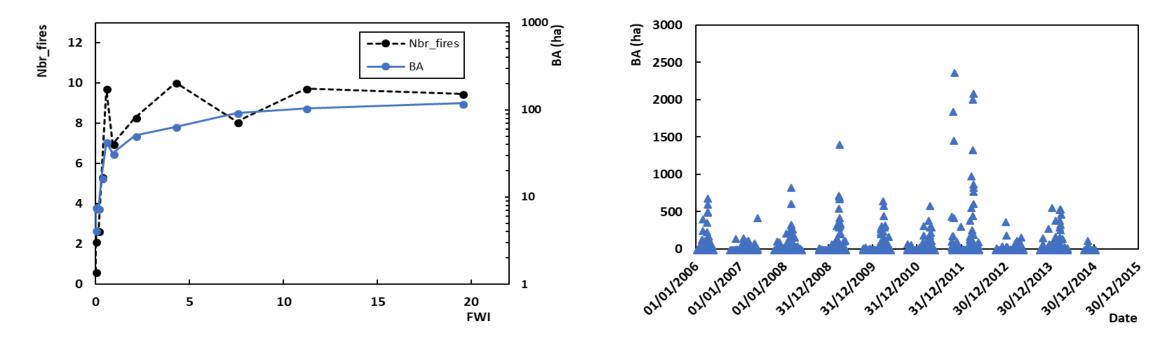
- Risk level: 5
- BA: 10613.3 ha



• Class C - Winter

ES241 (08/03/2012):

- Risk level: 3
- BA: 2734.1 ha



• Class C - Winter

ES120 (23/10/2011):

- Risk level: 3
- BA: 2374.6 ha

• Class C - Winter

ES130 (27/03/2012):

- Risk level: 2
- BA: 2146.5 ha

Conclusion

- A calibration of the forest fire danger based on the FWI values was established for the entire Europe.
- This calibration was based on the assumption of the existence of a monotnic relationship between FWI and the NF and BA, which is not always the case.
- We identified cases that require more attention namely the occurrence of very bad fire days and the winter fires.

8th INTERNATIONAL CONFERENCE ON FOREST FIRE RESEARCH

Conference Chairman: Professor Domingos X. Viegas (ADAI, University of Coimbra, Portugal)

10 – 16 November 2018 ; Coimbra, Portugal

Conference Topics

A wide range of topics involved in this pluri-disciplinar problem can be covered by the authors during the Conference. Papers or posters dealing with the most relevant topics related to forest fires on a scientific basis will be accepted. These topics are only indicative therefore submissions can cover other relevant aspects:

• Fire Suppression and New technologies

Human and Institutional factors

- Remote Sensing Fire Management
- Forest management and Fire Prevention
- Fire at the Wildland Urban Interface
- Forest Fire Risk assessment and Climate Change
 Fire Detection and Monitoring
- Large FiresFire Safety

- Economic Issues
- Fire Ecology
- Evaluation and management of burned areas

Related events

V Short Course on Fire Safety(10 November 2018)

VIII Short Course on Fire Behaviour (11 November 2018)

Con	tacts	
T 1	1.1	c . 1

The address of the Secretariat of the Conference is:

ADAI Rua Pedro Hispano, 12 3031-601 Coimbra PORTUGAL

Tel.: +351 239 790732 Fax.: +351 239 790771 email: icffr@dem.uc.pt

www.adai.pt/icffr

Deadlines

The deadlines for participating in the Conference are:

- Presentation of Abstracts
 Acceptance of Abstracts
- Full version of Papers or Posters
- Early Registration
- Early Hotel Reservation
- Definitive Program
- www.facebook.com/ceif.adai
- 15 February 2018 30 April 2018 30 June 2018 30 September 2018 30 September 2018 31 October 2018

3rd GWIS and GOGC-GOLD Fire IT Meeting

Fire Danger Enhancement and Calibration

Domingos Xavier Viegas with L. M. Ribeiro and D. Alves Maryland 1st October 2018

TUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

www.adai.pt/ceif | www.facebook.com/ceif.adai