KING'S College LONDON Fire Radiative Energy eMissions Methodology (FREM) for Fire Emissions Estimation

University of London

National Centre for Earth Observation

Martin J. Wooster, Bernardo Mota* and Jiangping He, Weidong Xu.

Department of Geography, King's College London. & NERC National Centre for Earth Observation [NCEO] * Now At JRC, Italy.

Australian Fires (photographed at night from the ISS)

Emissions Methodologies

GFED [currently MODIS BA Based, non NRT]

- Based on observations insensitive to observation time
- Based on very long-term datasets, so long-time series
- Potential biases in burned area measures
- Fuel loads & combustion completeness may have large uncertainties 7

Geostationary [NRT & FRP Based- though not @ high lats]

- Avoids need for fuel loads & combustion completeness
- Semi-continuous observations insensitive to observation times (and less to cloud)
- Assumes fixed relationship between FRP and biomass combustion rate
- Misses more low FRP fires than with polar-orbiters

GFAS [currently MODIS FRP Based]

- Avoids need for fuel loads & combustion completeness
- Sensitive to MODIS overpass time in relation to diurnal cycle (and cloud) $\ref{eq:sensitive}$
- Hard to know how to convert FRP to emissions rate so calibrated to GFED

Time Difference between Peak Burn Time and Aqua MODIS Overpass

GFAS MODIS-estimated FRE to GFED3.1 Fuel Consumption

300 -

S)

PE

õ

EFOM

ą

AGOM

မ္မ

MODIS-FRE (PJ month-1)

ဗ

AG

EF

GFED3 DM (Tg DM month-1)

Derivation of conversion factors (CF) from linearly regressing monthly GFED3.1 DM with GFAS1.0 FRE

Predominant Fuel Class									
Linear Regres.	SA	AG	DF	EF	SAOM	AGOM	PEAT	EFOM	ALL
R ²	86%	58%	55%	50%	77%	54%	57%	86%	74%
Slope [g kJ ⁻¹]	0.78	0.29	0.96	0.49	0.26	0.13	5.87	1.55	0.85

Slide and Data taken from Kaiser et al. (2012) Biogeosciences

 $Cf_{small scale} = 0.37 \text{ g kJ}^{-1}$

Fire Radiative Energy eMissions (FREM)

- Geostationary FRP to get FRE
 - insensitive to observation times
- Exploit atmospheric observations to derive Conversion Factors
 - link FRP <u>directly</u> to smoke emission rate

(similar to C. Ichoku MODIS-FRP based FEER approach)

- Subsequently use relations to estimate fuel consumption as a final step (including fuel consumption per unit area)
 - remove bottom-up estimation of fuel consumption

PILOTED IN SOUTHERN AFRICA USING 15 mins METEOSAT FRP-PIXEL PRODUCT

Currently Under Review in RSE

Meteosat SEVIRI Hourly FRE

Five biomes based on reclassification of 300 m Globcover (incl multiple "savanna")

August 2011 Hourly FRE time-series for a 500 km × 500 km region – mostly grassland savannah

Per-Fire Smoke Plume Delineation

small(ish) subset of fires used to obtained conversion coeffs

Pre-Fire Smoke Plume Delineation

DOY: 224 MODIS Slots: AQUA 2011-08-12T1240 224 V ibe

SEVIRI Active Fire Detections MODIS AF Detections

For each fire:

- +

.

(2) (1) (1)

- Total Plume AOD calculated
- Apply smoke mass extinction coefficient (555 nm) $\beta_e = 3.5 \pm 1.0 \text{ m}^2.\text{g}^{-1}$

Datetime: Fri, 2011 August 12

 Obtains total particulate matter (g) in selected plume

MODIS 10 km AOD Product

Path: /static/data_store/modis_emisson/AOUA/2011-08-12_224/AOUA_2011-08-12T1240_2

Six plumes here matched to 6 FRE measures....

Smoke Emissions Coefficients, C_e [g.MJ⁻¹]

TPM Emissions Density [g.m⁻²]

3 g.m⁻² TPM emissions \cong FC of 350 g.m⁻² (Shea et al., 1996) with EF_{TPM} 8.5 g.kg⁻¹ (A&M, 2001)

3 g.m⁻² TPM emissions \cong FC of 350 g.m⁻² (Shea et al., 1996) with EF_{TPM} 8.5 g.kg⁻¹ (A&M, 2001)

TPM Emission Rate [Gg.day⁻¹] Southern Africa August 2012 Detail

Emission of species X = TPM Emissions . EF_x / EF_{TPM}

Fuel Consumption per m²

Fuel Consumption (kg per grid cell) = TPM Emissions (g)

TPM Emissions Factor (g.kg⁻¹)

lational Centre for arth Observation

Conclusions, Adv & Limitations

- "FREM" approach delivers emissions at very high spatiotemporal resolutions and in NRT.
- TPM emissions appear in line with atmospheric observations.
- Emissions broadly agree with NASA FEER inventory, and are higher than GFAS and (less so) higher than GFED.
- Fuel consumptions (inc per unit area) can be derived via inverse of emissions factors (and use of BA data).

BUT

- Extent of need for low FRP fire correction currently uncertain.
- FREM not usable at v. high latitudes, and extent to which "undetected" fires needs adjusting for remains uncertain.
- Future work needs a focus on EF_{TPM} & AOD specification.
- Interest in 30 m resolution burned area dataset for FC per m².