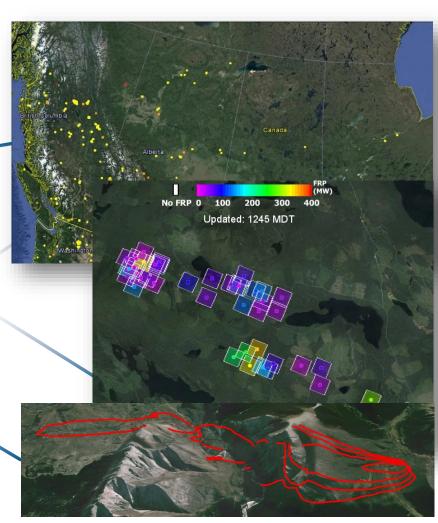
Unclassified

The Canadian Wildland Fire Monitoring Sensor (CWFMS) Mission Proposal

Helena van Mierlo Canadian Space Agency

2nd GWIS & GOFC-GOLD Fire IT Meeting Nov 20th 2017, London UK



Government Gouvernement of Canada du Canada

Fire Characterization Data

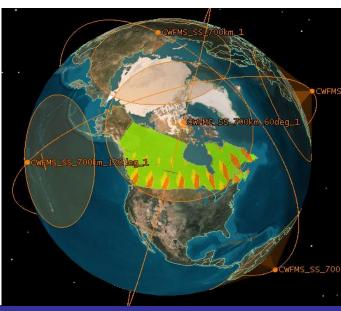
- Hotspot Locations
- Fire Radiative Power (FRP)
- Rate of Spread (ROS)

Government Gouvernement of Canada du Canada

2

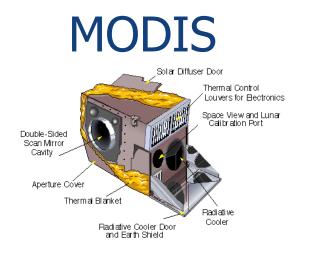
Relevant Wavelengths measured in the infrared and visible spectrum

Spectral Band	(µm)	Purpose			
Visible – Near Infrared (VNIR)	0.5-0.6 0.6-0.7 0.8-0.9	 Cloud mapping Burned area mapping 			
Short-Wave Infrared (SWIR)	1.6-1.7	• To improve burned area mapping			
Mid-Wave Infrared (MWIR)	3.5-4.2	 High Temperature Event (HTE) detection Fire Radiative Power (FRP) measurement 			
Long-Wave Infrared (LWIR)	10.4-12.3	 Surface temperature characterization False detection (sun-glint) identification Cloud rejection Bi-spectral methods for sub-pixel fire characterization 			


3

Measurements Needed by the Users

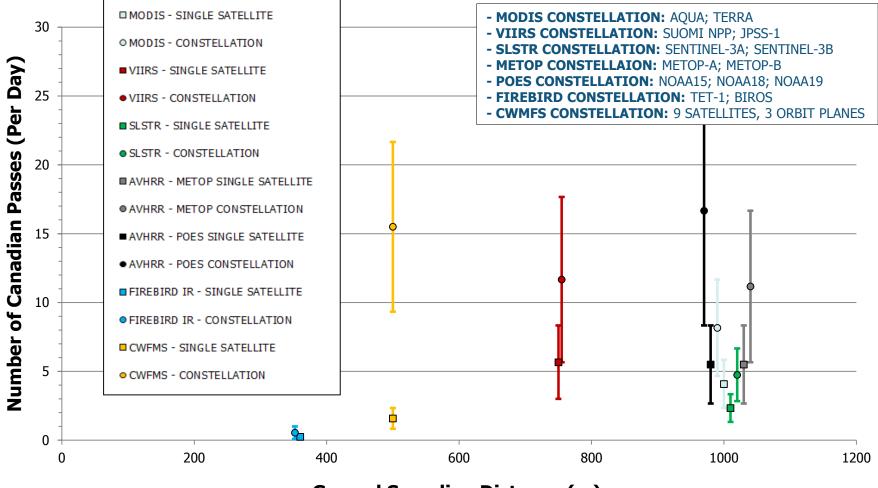
- Fire characterization data is needed:
 - ✓ Every 2 3 hours;
 - ✓ Of every point in Canada;
 - \checkmark For fires as small as 15 m by 15 m;
 - ✓ Available within 30 min. after data acquisition.


Only possible from space With a constellation of satellites Affordable with low-cost satellites

Space Missions With Fire Monitoring Capability

AVHRR

FIREBIRD



Government Gouvernement of Canada du Canada

5

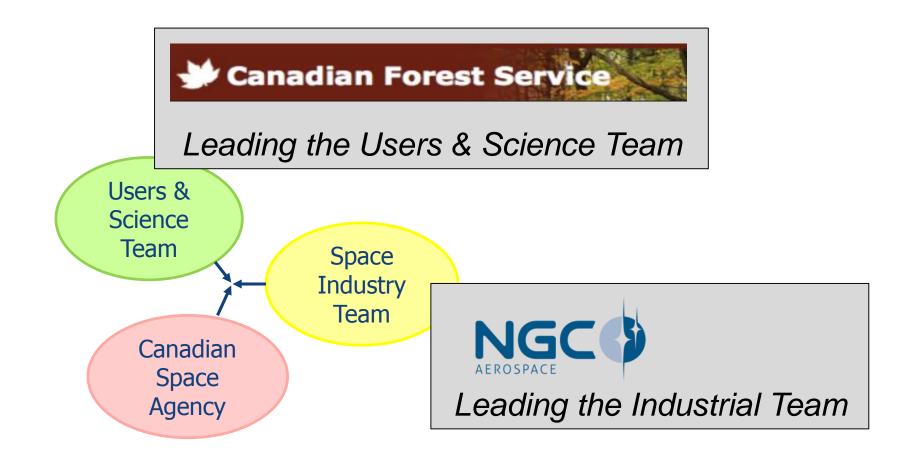
CWFMS Comparison with Other Satellites Revisit against Ground Sampling Distance (GSD)

Ground Sampling Distance (m)

Government Gouvernement of Canada du Canada

6

Limitations of Available Satellite Infrared Data


- Saturation issues;
- Insufficient temporal or spatial resolution;
- Data latency;
- Time of measurement in the day;
- Coverage of Canadian forests.

hent Gouvernement da du Canada

CWFMS Mission Feasibility Study (completed in 2016)

Government Gouvernement of Canada du Canada

8

A Canadian Solution: Uncooled Infrared Detector Technology

- A <u>microbolometer</u> is a thermal detector. Infrared radiation strikes the detector material, heating it, and thus changing its electrical resistance;
- Contrary to infrared sensors used in other missions, the microbolometer does <u>not require cooling</u>;
- This allows for a relatively <u>low-cost mission</u> with both <u>sufficient sensitivity/spatial resolution</u> as well as <u>sufficient temporal resolution</u> (large swath) ____

Result:

- High Revisit:
 - Multiple sensors packed in one satellite \rightarrow large swath;
 - Low-cost microsatellite \rightarrow makes constellation of satellites affordable.
- Short Data Latency:
 - Use of Canadian Ground Stations;
 - Maximum 30 min. latency.
- Routinely Scanning of the whole of Canada:
 - Low power needs allow for long-duration scanning.

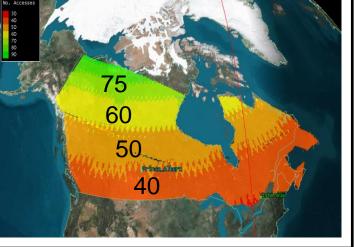
9

/178 km

1200 km

CWFMS

Other missions

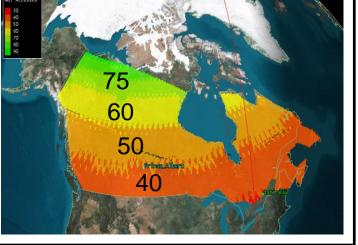


Capabilities of a SINGLE operational CWFMS Satellite

Spectral (µn	_	Purpose	GSD (m)	Sensitivity	Dynamic Range
VNIR	0.5-0.6 0.6-0.7 0.8-0.9	For loud mapping and burned area mapping	250	SNR > 200	< 500 W⋅m ⁻² ⋅µm ⁻¹ ⋅sr ⁻¹
SWIR (optional)	1.6-1.7	To improve burned area mapping	250	SNR > 100	
MWIR	3.5-4.2	For High Temperature Event Detection and FRP measurement		NETD < 0.3 K @ 400 K	300 – 610 K
LWIR 1	10.4- 11.3	Surface temperature characterization, false detection (sun-glint) identification,	500	NETD < 0.7 K @ 300 K	300 – 440 K
	11.4- 12.3	loud rejection and bi-spectral methods for sub-pixel fire characterization		Number of passes during one month by one operational CWFMS Satellite:	

- High accuracy geo-referencing;
- Daily coverage of the whole of Canada;

- Low data latency (<30 minutes for priority data);
- Launch no earlier than 2022.

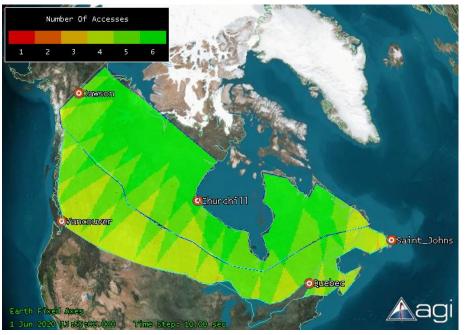


Capabilities of a SINGLE operational CWFMS Satellite

Spectral (µm		Purpose		GSD (m)	Sensitivity	Dynamic Range
VNIR	0.5-0.6 0.6-0.7 0 8-0 9	For loud mapping and burned mapping	area	250	SNR > 200	< 500 W⋅m ⁻² ⋅µm ⁻¹ ⋅sr ⁻¹
SWIR (optional)		Size of an oven		250	SNR > 100	
MWIR	(NETD < 0.3 K @ 400 K	300 – 610 K
			ization,	500	NETD < 0.7 K @ 300 K	300 – 440 K
LWIR -		tification, nethods on		Number of passes of by one operational (-	

- High accuracy geo-referencing;
- Daily coverage of the whole of Canada;

- Low data latency (<30 minutes for priority data);
- Launch no earlier than 2022.

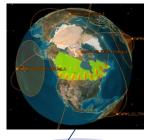



Canadian Wildland Fire Monitoring System (CWFMS)

Number of Accesses with a 9-sat Operational CWFMS Constellation:

During the burning period of one day (09:00 – 21:00 local time)

During the PEAK burning period of one day (15:00 – 19:00 local time)


Government Gouvernement of Canada du Canada

12

CWFMS Implementation Steps

STEP 4 Operational Use in Space

Operational

Full (commercial) space asset, Ground Segment & Operations, End-user products and downstream businesses

Reliable Service

Demonstration in Space STEP 1 Airborne Campaign **Proto-Operational** Single (gov) spacecraft, Simplified operations, Valued-added for Industry & Gov/Academic users **Space Demo** Service Try-out Payload operated in space, User preparations (science & application development) **Tech Demo Space Worthiness**

STEP 2

Payload or Payload Component **Technical Feasibility**

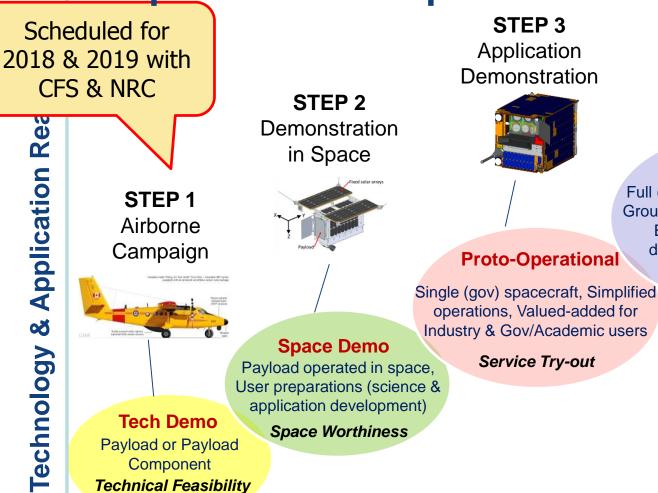
Time

Government Gouvernement of Canada du Canada

13

2nd GWIS & GOFC-GOLD Fire IT Meeting, Nov 20th 2017, London UK

STEP 3


Application Demonstration

Readiness Application õ Technology

CWFMS <hr/> <hr/> Implementation Steps

STEP 4 Operational Use in Space

Operational

Full (commercial) space asset, Ground Segment & Operations, End-user products and downstream businesses

Reliable Service

Time

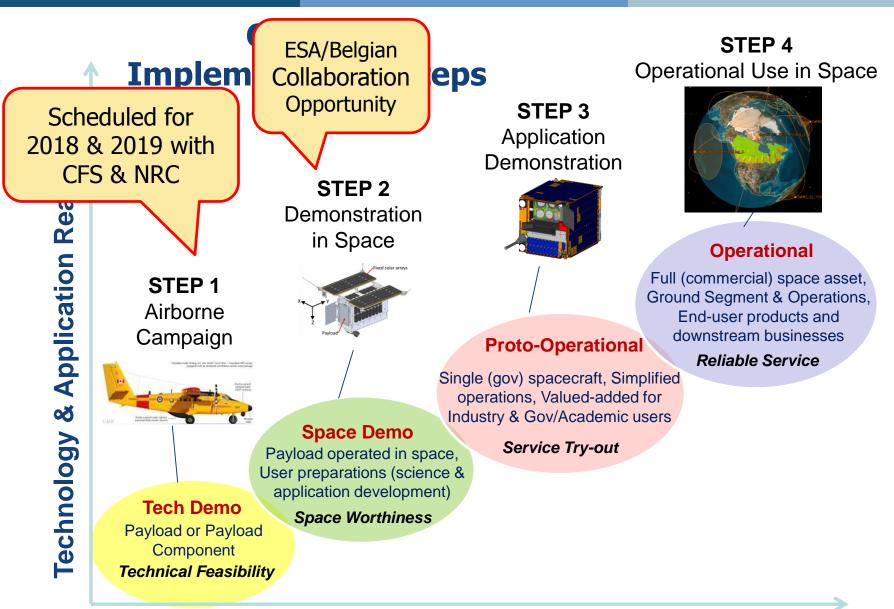
Government Gouvernement of Canada du Canada

14

Airborne Campaign 2018-2019

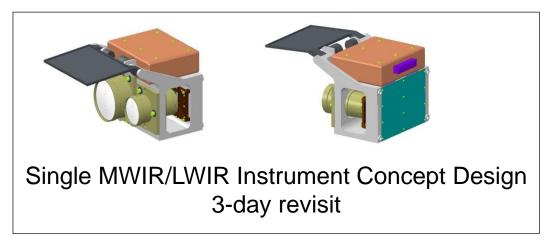
- Collaboration between CSA, INO, NRCan-CFS, NRC, Ontario gov;
- Focus on coincident IR sampling with tower and aircraft mounted cameras;

15


NRC Twin Otter

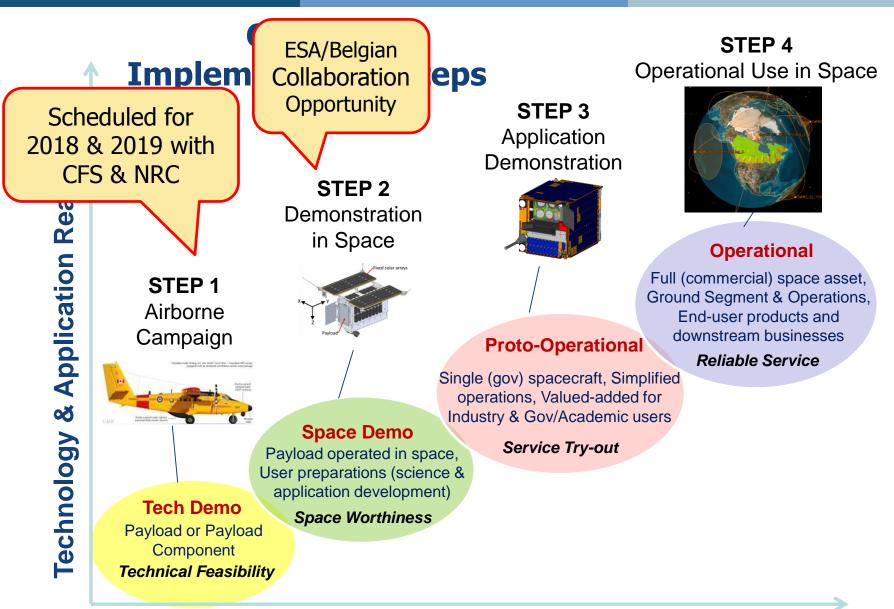
 Burns in a variety of configurations at the Rose Experimental Burn Station near Sault Ste. Marie, Ontario, to verify performance.

Time

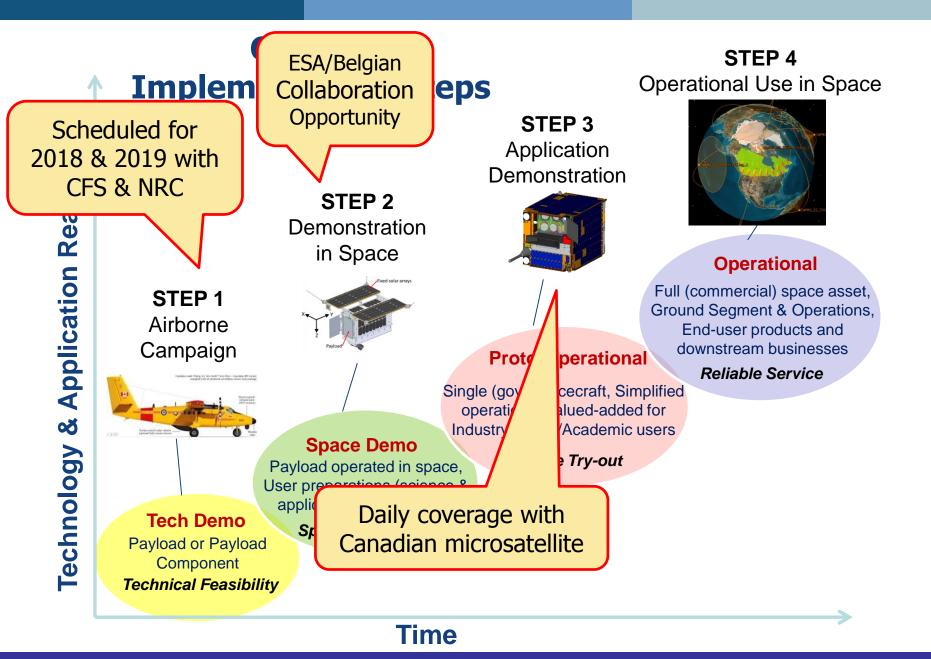

Government Gouvernement of Canada du Canada

16

ESA/Belgian Collaboration Opportunity

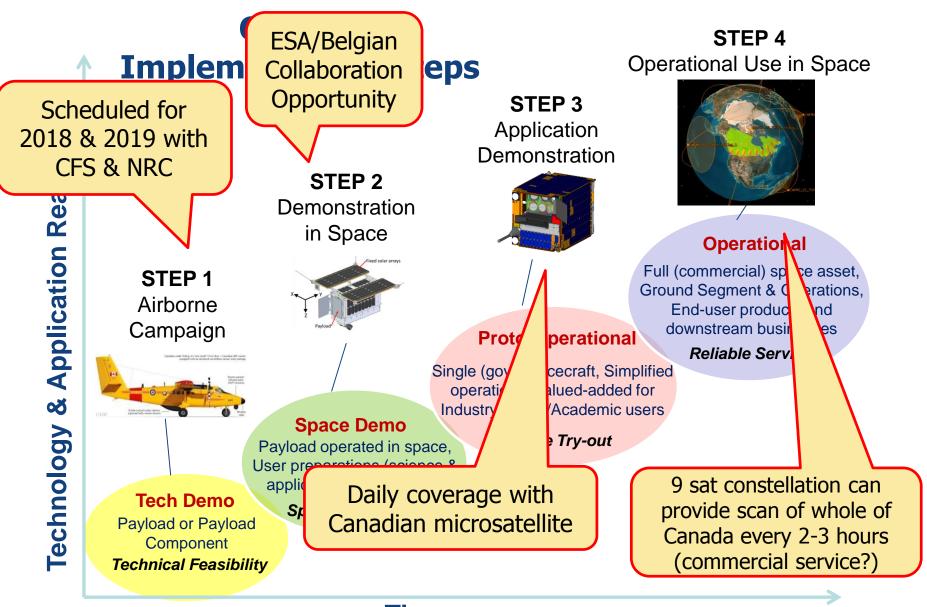

- Purpose: enhance operational ESA Proba-V (Vegetation) mission with a thermal dataset;
- 12Cubesat hosting Canadian instrument to fly in formation with existing Proba-V satellite;
- Launch of 12Cubesat intended for end of 2019;

ent Gouvernement a du Canada


Time

Government Gouvernement of Canada du Canada

18



*

Government Gouvernement of Canada du Canada

19

Time

Government Gouvernement of Canada du Canada

20

STEP 4: Operational Constellation

- Interest coming up from commercial entities to build a thermal constellation or include thermal observations in constellations;
- Specific technology needed for this application has not been demonstrated in space by any nation;
- CWFMS demonstration will put Canada on the map to supply the infrared detector technology for such initiatives.

Earth Observation Summit 2017 Montreal, June 20 – 22

3-day Workshop dedicated to Wildfire Remote Sensing (RS)

- 50+ participants from 6 countries;
 - 29 presentations, 2 panel discussions:
 - Bridging Research & Reality
 - Air, Ground and Space helping each other out
 - 30 needs/challenges/lessons identified;

Recommendation relevant to CWFMS:

 Put equal emphasis on improvements on <u>data availability</u> (needs from the operational community: how fast can you get it, frequency, reliability and continuity) as on <u>data quality</u> (usual focus of the research community, e.g. accuracy of the measurement);

Conclusion

- There is a need in Canada for frequent fire monitoring data;
- A low-cost satellite system solution exists, based on microbolometer technology:
 - 'Good-enough' sensitivity approach;
 - Combining relatively high spatial/temporal resolution.
- CSA-CFS-NRC are preparing an airborne campaign for summer 2018;
- Discussions are on-going with Belgium/ESA for a technology demonstration opportunity.

Questions?

Government Gouvernement of Canada du Canada

24

Contact Information

Helena van Mierlo, CWFMS Programmatic Lead Canadian Space Agency (CSA) Tel : (450) 926-7754 / <u>helena.vanmierlo@canada.ca</u>

25

Back-up Slides

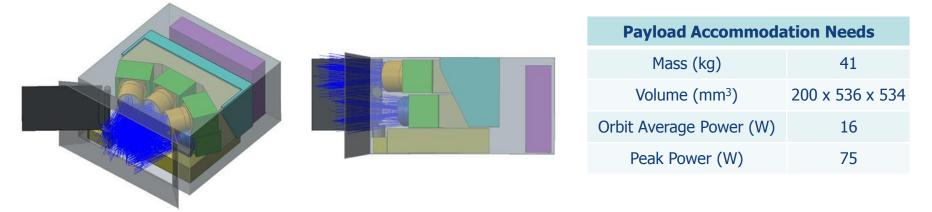
Government Gouvernement du Canada

26

CSA Investment History

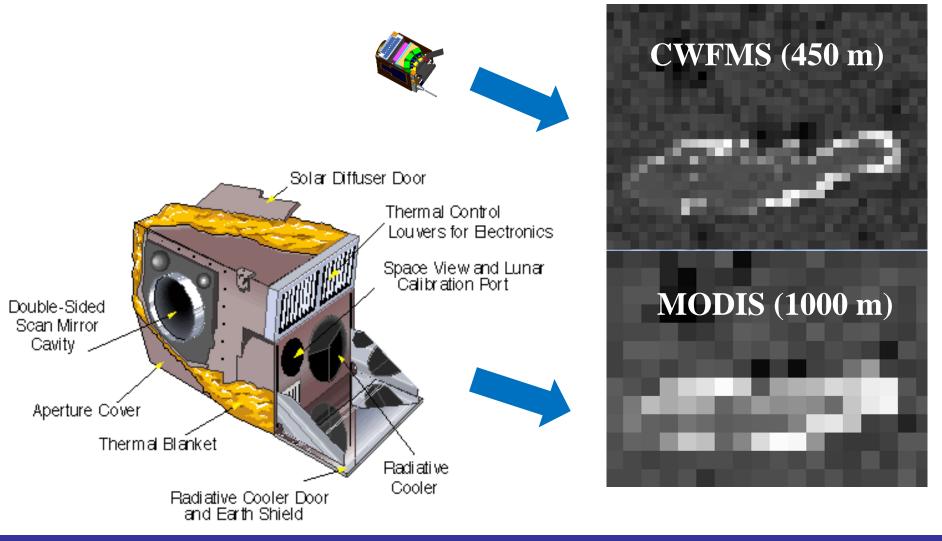
1995	Start of Canada investing in the development of microbolometer technology for thermal imaging
2007	Start of CSA investing in the development of microbolometer technology for the <u>fire application</u> .
2011	 Technology demonstration of early design in space¹ Was designed for Long-Wave InfraRed (LWIR) so exhibited less adequate performance at Mid-Wave InfraRed (MWIR); Without in-flight calibration capability
2016	Completion of feasibility study (CWFMS ²) of a Canadian microsatellite with the latest microbolometer technology • Optimum designs for Long-Wave and Mid-Wave InfraRed (LWIR/MWIR) measurements

1. The New InfraRed Sensor Technology (NIRST) was demonstrated with partial results on the NASA Aquarius mission on-board the Argentine SAC-D spacecraft from 2011-2015.


2. CWFMS – Canadian Wildland Fire Monitoring System

Current State of the Art

- Payload with 3 MWIR + 3 LWIR cameras will provide daily global map;
- Each camera's detector is a linear array of 1017x3 pixels;



	ral band µm)	Purpose	GSD (m)	Sensitivity	Dynamic Range
MWIR	3.5-4.2	For High Temperature Event (HTE) Detection and Fire Radiative Power (FRP) measurement		NETD < 0.3 K @ 400 K	300 - 610 K
LWIR	10.4-12.3	Surface temperature characterization, false detection (sun-glint) identification, cloud rejection and bi- spectral methods for sub-pixel fire characterization.	400	NETD < 0.7 K @ 300 K	300 - 440 K

CWFMS Resolution (Simulated Data)

Government Gouvernement of Canada du Canada

29

