

University of London

National Centre for Earth Observation

LEVERHULME

Centre for Wildfires, Environment and Society

New AF Developments of European Satellites

Wooster, M., Xu, W., Nguyen, H., He, J., Roberts, G., Johnston, J., Strydome, T.,

Structure

 Fire Radiative Energy eMissions (FREM) Products from Geostationary Satellites

 Sentinel-3 Polar Orbiting SLSTR Active Fire and FRP Products

Fire Radiative Energy & Fuel Consumption

Fuel Consumption = Σ FRP \times CF

Theoretically ~ constant

National Centre for

GFAS MODIS-estimated FRE to GFED3.1 Fuel Consumption

Kaiser et al. (2012) Biogeosciences

ALL

74%

0.85

"Fire Radiative Energy eMissions" [FREM] Approach – "Fire Biome Map"

% tree cover > 5 m tall using 30 m Landsat 2015 Vegetation Continuous fields (VCF) product. FREMv2 African biome map using 300 m ESA CCI Landcover map (2015). Two woodland savanna biomes were separated into low and high % tree cover using the VCF product.

Smoke Plume Delineation

DOY: 224 MODIS Slots: AQUA 2011-08-12T1240 224 V ihe2

SEVIRI Active Fire Detections MODIS AF Detections

.

Link FRE released by a fire from first detection to measurement of plume AOD.

Datetime: Fri, 2011 August 12

FRE assessed from 15-min temporal resolution SEVIRI FRP-PIXEL Products

Smoke Plume Delineation

New Developments in FREMv2

Coefficient Derivation

Fuel Consumption Per m² of Burned Area

Extension to use Trace Gas Observations from S5P

Emissions are derived from coefficients linking Meteosat-derived Fire Radiative Energy (FRE) totals to atmospheric species (CO) for different biomes - Nguyen et al. (*ACPD*)

Meteosat Active Fire pixels from which FRE is derived

Meteosat / S5P Fire Emissions Product Evaluation

Emissions validation using emissions + WRF-CMAQ compared to independent Sentinel-5P CO observations

 111 23

Date

AUG 03

AUG 17

AUG 10

AUG 31

Any other species, x, can be estimated via emission factor ratios:

$$C_{e}^{x}\left[g.MJ^{-1}\right] = \frac{EF_{x}\left[g.kg^{-1}\right]}{EF_{reference}\left[g.kg^{-1}\right]} \cdot C_{e}^{reference}\left[g.MJ^{-1}\right]$$

Where reference species is CO

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR)

SLSTR	Band center	Bandwidth	Albedo range	Reference albedo	SNR at reference
Channel	(μm)	(µm)	(%)	(%)	
S1	0.555	0.020	0 - 100	0.5 – 30	25 – 570
S2	0.659	0.020	0 - 100	0.5 – 30	25 – 570
S3	0.865	0.020	0 - 100	0.5 – 30	21 – 630
S4	1.375	0.015	0 - 100	0.5 – 5	25 – 162
S5	1.610	0.060	0 - 100	0.5 – 50	37 – 900
S6	2.250	0.050	0 - 100	0.5 – 4	27 – 142
			BT range (K)	Reference BT (K)	NEdT at reference (mK)
S7	3.74	0.38	200 – 311 🔭	270	56
S8	10.85	0.9	200 - 321	270 ⁶ 7 270	29
S9	12	1.0	200 – 318	270	21
F1	3.74	0.38	285 – 450	285 – 450	680 - 16
F2	10.85	0.9	230 - 400	230 – 400	79 – 35

- Two operational satellites
- Global Daily Data
- @ ~ Terra overpass times

S3 SLSTR Data Intricacies

Footprint Overlap Near Nadir Scan

Operational S3 AF Detection & FRP Products

- Global daily active fire (AF) counts and FRP retrievals from S3A and S3B.
- SLSTR has S7 and F1 MIR channels
- S7 often saturates by day (starting at BTs > 311 K) so day and night products are different

S3 SLSTR AF Detection Alg. Structure

Some Key Points

- Daytime synthesised "BT₄" channel combing S7 & F1
- Background characterisation uses BT₄ < 330 K
- Contextual AF pixel detection thresholds increased compared to the night-time version.
- Sun-glint & desert detection thresholds further optimised.
- AF pixel clustering used to detect weak AF pixels at AF cluster edge

- Use S7 where possible for initial AF pixel detection.
- Always use F1 for FRP retrieval or not?

F1_ON and F1_OFF Comparison

- Each fire has cluster of AF pixels in S7 and F1 (each imperfectly co-registered)
- F1_OFF any fire without saturation S7 is processed using the S7 data (lower noise, more sensitive).
- F1_ON means that such fires are anyway processed with F1 (smaller pixels)

Airborne Data Collection Over African Fires

Simulation of SLSTR F1_ON & F1_OFF Observations

290 300 310

320 >330 (K)

Always use F1 for 2nd Pass AF detection & FRP retrieval

Global Nighttime SLSTR AF & FRP Example Comparison

Active Fire Counts

FRP Totals

Night-time S3 detects more AF pixels than MODIS, but less than VIIRS. FRP totals less different

Night-time FRP Time-Series SLSTR vs. MODIS

South America

SLSTR S3B 150 125 125 125 100 5 10 15 20 25 30 Jan.2019

MODIS Terra

200

- Active fire pixel counts are higher for SLSTR than for MODIS.
- FRP values are far more similar.

S3B FRP Product Performance Compared to MODIS

Per Pixel FRP Freq. Distribution (c)SLSTR MODIS 104 AF Pixel Count 103 102 20 0 40 100 120 140 AF Pixel FRP (MW)

Global Daytime SLSTR AF & FRP Example Comparison

Final S3 Spaceborne to Airborne FRP Dataset

Retrieved FRP Uncertainty & Sub-Pixel Fire Position

- F1 channel shows benefits compared to S7 channel, despite higher noise.
- Even with F1_ON, FRP can vary by up to ~ x2 depending on fire sub-pixel position.
- Comparison to airborne shows all but one fire to be within $\sim x^2$, and most far closer.
- F1_ON confirmed as a far better option.
- F1_ON now used in NTC products available from Sentinel Data Hub.

Obtaining S3 AF Detection & FRP Products – Two Sources

[FIRMS Integration probably coming]

Opernicus Europe's eves on Earth Total number 1 km hot-spots = 2635 FRP 1 km: Total = 18793.0 [MW] - Avg. = 7.1±14.7 [MW] - Min = 0.2 [MW] - Max = 308.4 [MW] 70°N 50°N 30°N 10°N 10°S 4 30°S 50°S 70°S 90°S 160°W 120°W 80°W 0° 40°E 40°W 80°E 120°E 160°E 20 40 60 80 100 0

Sentinel-3 A SLSTR - Standard FRP MWIR [MW] - Night - 2.0 deg resolution - 19.06.2022

