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Recent advances in sensor technology have led to the development of new hyper-
spectral instruments capable of measuring reflected radiation over a wide range of wave-
lengths. These instruments can be used to assess the diverse characteristics of vegetation
recovery that are only noticeable in certain parts of the electromagnetic spectrum. In this
research, such instruments were used to study vegetation recovery following a forest fire
in a Mediterranean ecosystem. The specific event occurred in an area called El Rodenal
of Guadalajara (in Central Spain) between 16 and 21 July 2005. Remotely sensed
hyper-spectral multitemporal data were used to assess the forest vegetation response
following the fire. These data were also combined with remotely sensed fire severity
data and satellite high temporal resolution data. Four Airborne Hyperspectral Scanner
(AHS) hyper-spectral images, 361 Moderate Resolution Imaging Spectroradiometer
(MODIS) images, field data, and ancillary information were used in the analysis. The
total burned area was estimated to be 129.4 km2. AHS-derived fire severity level-of–
damage assessments were estimated using the normalized burn ratio (NBR). Post-fire
vegetation recovery was assessed according to a spectral unmixing analysis of the AHS
hyper-spectral images and the normalized difference vegetation index (NDVI), as cal-
culated from the MODIS time series. Combining AHS hyper-spectral images with field
data provides reliable estimates of burned areas and fire severity levels-of-damage. This
combination can also be used to monitor post-fire vegetation recovery trends. MODIS
time series were used to determine the types and rates of vegetation recovery after the
fire and to support the AHS-based estimates. Data and maps derived using this method
may be useful for locating priority intervention areas and planning forest restoration
projects.

1. Introduction

Each year, wildfires affect millions of hectares of forests worldwide. Fires release a signifi-
cant amount of greenhouse gases, particulates, and aerosol emissions into the atmosphere,
and these emissions significantly alter the chemistry of the atmosphere (Chuvieco 2009).
Global estimates of total gas emissions from biomass burning are uncertain (Palacios-
Orueta et al. 2005); according to studies, the total may range between 2.0 Pg C year−1
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(Van der Werf et al. 2010) and 4.5 Pg C year−1 (Levine 1996). At regional and local scales,
fires also affect vegetation composition; landscape structure, composition, and function;
biodiversity; soil erosion; air quality; and the water cycle; and they have important impacts
on human health, lives, and properties (Díaz-Delgado, Lloret, and Pons 2003; Lentile et al.
2006; Röder et al. 2008; Chuvieco 2009). Fires change the composition of the atmosphere
and land-use patterns, but they are also affected by these processes (Chuvieco 2009).
Previous management practices and global warming may increase the frequency and sever-
ity of wildfires (Levine 1991; van Leeuwen et al. 2010). This is especially important in the
Mediterranean region, where fire is no longer a natural ecological issue but rather a persis-
tent and common anthropogenic impact (Pérez-Cabello et al. 2009). According to Pausas
(2004), if the current climatic trends of increasing annual and summer temperatures and
decreasing summer rainfall continue, fuels will become drier, which will, in turn, increase
the risk of fire for large areas (Pausas 2004) and amplify the hazard of desertification
(Moreno 2007).

The effects of fire on vegetation are related to the susceptibility of plants to heat and
flames (Pérez-Cabello et al. 2009). In the Mediterranean region, many species exhibit either
passive defence (e.g. thick bark) or active regeneration mechanisms (e.g. seed production,
seed banking, and sprouting) to rapidly overcome the effects of fire (Mooney and Hobbs
1986). However, over the long term, fire may change vegetation composition and landscape
patterns (Pérez-Cabello et al. 2009), threatening the persistence of species less adapted
to fire. The post-fire response of many types of vegetation is largely variable because it
is influenced by structural (e.g. altitude, slope, and aspect; soil type and condition; land-
use patterns; vegetation composition and status) and temporal (e.g. burn severity; post-fire
temperature and rainfall; post-fire management) factors (Retana et al. 2002; Díaz-Delgado,
Lloret, and Pons 2003; Pausas, Ribeiro, and Vallejo 2004; Röder et al. 2008; van Leeuwen
2008; Pérez-Cabello et al. 2009).

Land managers attempt to identify areas where poor post-fire regeneration is expected
to plan future restoration projects (Pausas, Ribeiro, and Vallejo 2004). Remotely sensed
optical images enable managers to identify priority intervention areas (Ruíz-Gallardo,
Castaño, and Calera 2004; Lentile et al. 2006) and to study long-term vegetation recov-
ery (Röder et al. 2008; Vicente-Serrano, Pérez-Cabello, and Lasanta 2008; Pérez-Cabello
et al. 2009). Remote-sensing data are particularly appropriate for the latter task because of
their capacity to reflect slight changes on the land surface and their high spatial and tempo-
ral resolutions (Lentile et al. 2006). Studies of post-fire vegetation recovery using satellite
data have been used to document regeneration rates (Lentile et al. 2006; Röder et al. 2008),
explore the influence of structural and temporal factors (Díaz-Delgado, Lloret, and Pons
2003; Röder et al. 2008; van Leeuwen et al. 2010), and study vegetation response in rela-
tion to burn severity (Díaz-Delgado, Lloret, and Pons 2003; Ruíz-Gallardo, Castaño, and
Calera 2004). The majority of these assessments have been conducted using medium to
high spatial resolution multispectral data (e.g. Landsat MSS (Multispectral Scanner), TM
(Thematic Mapper), and ETM+ (Enhanced Thematic Mapper Plus)) (Viedma et al. 1997;
Díaz-Delgado, Lloret, and Pons 2003; Vicente-Serrano, Pérez-Cabello, and Lasanta 2008),
although hyper-spectral images have also been used (Riaño et al. 2002; Kokaly et al. 2007).
Most studies have relied on spectral vegetation indices such as the NDVI (normalized
difference vegetation index) (Viedma et al. 1997; Díaz-Delgado, Lloret, and Pons 2003;
Vicente-Serrano, Pérez-Cabello, and Lasanta 2008), which measures direct changes in the
green vegetation cover (Lentile et al. 2006), while others have used techniques such as prin-
cipal component analysis, Kauth–Thomas transformation, and spectral mixture analysis
(Lentile et al. 2009; Pérez-Cabello et al. 2009).

D
ow

nl
oa

de
d 

by
 [

U
PM

],
 [

Si
lv

ia
 M

er
in

o-
de

-M
ig

ue
l]

 a
t 0

3:
11

 2
6 

Fe
br

ua
ry

 2
01

3 



International Journal of Remote Sensing 4027

Spectral mixture analysis (SMA; common synonyms: linear spectral unmixing, mix-
ture modelling, linear model for signal mixing) is particularly useful in post-fire vegetation
recovery studies in the Mediterranean context (Röder et al. 2008). This technique, which
relies on the assumptions of linear spectral mixing models (Settle and Drake 1993; Drake,
Mackin, and Settle 1999), can be applied to any type of imagery with multiple reflectance
channels, including both multispectral and hyper-spectral data sets (Lentile et al. 2009).
It estimates the surface abundance of several pure spectral components (referred to as
endmembers), which together produce the observed mixed spectral signature of the pixel
(Cochrane and Souza 1998; González-Alonso et al. 2007). In this case, the limitation of
having fewer components than bands must be considered. The intrinsic dimensionality of
the spectral data rather than the number of spectral bands should be utilized (Settle and
Drake 1993).

Several studies have stressed the need for long-term post-fire ecosystem monitoring
(van Leeuwen et al. 2010). The majority of remote-sensing assessments of post-fire vegeta-
tion response are based on multitemporal Landsat imagery (Viedma et al. 1997; Miller and
Yool 2002; Díaz-Delgado, Lloret, and Pons 2003; Lentile et al. 2006; Röder et al. 2008;
Vicente-Serrano, Pérez-Cabello, and Lasanta 2008). Researchers working with Landsat
data have developed appropriate radiometric correction techniques because multitempo-
ral data sets, particularly those compounded by Landsat images, are affected by different
sources of noise, which, in turn, complicates analyses of the results (Röder et al. 2008;
Vicente-Serrano, Pérez-Cabello, and Lasanta 2008). Only a limited number of studies have
used high temporal resolution data sets, such as those provided by the MODIS (Moderate
Resolution Imaging Spectroradiometer) sensor. According to van Leeuwen (2008), MODIS
NDVI time-series data are a ‘valuable resource to detect trends, seasonality, and anomalies
in forest vegetation dynamics that are changing due to wildfire’. Van Leeuwen et al. (2010)
successfully monitored post-fire vegetation response in three dry land ecosystems using
MODIS NDVI time-series data (16-day composite, 250-m pixel resolution) for the period
of 2000–2007.

Accurate information on the impacts of fire (fire and burn severity) can provide a base-
line for monitoring landscape response to fire (van Leeuwen 2008). Fire severity, which
integrates physical, chemical, and biological changes caused by fire (White et al. 1996),
is usually estimated from remote-sensing data because this is the only cost-effective and
efficient approach for gathering post-fire information (Gitas, de Santis, and Mitri 2009).
Several researchers have shown a direct positive relationship between fire severity and
post-fire regeneration response (Díaz-Delgado, Lloret, and Pons 2003; Lentile et al. 2006),
indicating the importance of including such attributes in vegetation recovery studies. Fire
severity studies have mainly used medium to high spatial resolution images, such as
Landsat-TM and -ETM+, Envisat-MERIS (Medium Resolution Imaging Spectrometer),
and SPOT (Système Pour l’Observation de la Terre) (Roldán-Zamarrón et al. 2006; Miller
and Thode 2007; De Santis and Chuvieco 2007; González-Alonso et al. 2007). Standard
fire severity maps classify territories into categories of unburned, low, moderate, and high
damage based on spectral vegetation indices or classification schemes (Lentile et al. 2006;
Lewis et al. 2007). The normalized burn ratio (NBR) index effectively identifies areas
affected by fire and accurately evaluates burn severity (Cocke, Fulé, and Crouse 2005;
Wimberly and Reilly 2007; Vicente-Serrano, Pérez-Cabello, and Lasanta 2008; Gitas, de
Santis, and Mitri 2009), although this approach has not always performed optimally (Roy,
Boschetti, and Trigg 2006).

The primary goal of this research was to evaluate the effectiveness and usefulness of
remotely sensed hyper-spectral multitemporal data for assessing post-fire forest vegetation
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response in a Mediterranean ecosystem. The following secondary objectives were also
identified: (i) to explore the ability of remotely sensed hyper-spectral data to produce a
fire severity map rapidly and cost-effectively; (ii) to examine the medium-term (3 years)
influence of fire severity on post-fire vegetation response; and (iii) to evaluate the use of
high temporal resolution MODIS NDVI time-series data to monitor post-fire forest vege-
tation response and to complement hyper-spectral data sets with high spatial and spectral
resolutions.

2. Study area

The study area is located in the northeastern part of Guadalajara province (Central Spain)
in an area called El Rodenal (Figure 1), where a forest fire occurred between 16 and 21
July 2005. The fire started in an area called Cueva de Casares (Riba de Saelices munici-
pality) from a barbecue and rapidly spread due to adverse weather conditions, including a
high temperature of 35◦C, a low relative humidity of 22%, 30 days since the last rainfall
event, and moderate to high wind speeds from 10 to 23 km h−1 (De Santis and Chuvieco
2007). The fire lasted 5 days, killed 11 fire-fighters, and burned a total of 130 km2 of for-
est dominated by Pinus pinaster with an understory of Quercus pyrenaica and Quercus
faginea and bushes of Cistus sp., Cytisus sp., and Erica sp. The area was characterized by a
spatially connected supply of fuel, an essential factor for fire propagation. A portion of the
affected area (roughly 31.5 km2) was located within the limits of the Alto Tajo Natural Park.
The affected area has a complicated topography, with altitudes ranging between 1100 and
1400 m, and is characterized by a network of deep valleys with steep gradients. From a geo-
logical perspective, the study area is a sequence of limestone and sandstone deposits, and
the main types of soils are Xerochrept, Plexeralf, and Xerorthent (De Santis and Chuvieco
2007). Rainfall in the region averages 500 mm per year, with maximum values at the end of
autumn and minimum values during summer. The average annual temperature is 10.5◦C.

3. Material

3.1. Hyper-spectral AHS images

The Remote Sensing Laboratory of CIFOR-INIA (Forest Research Centre – National
Institute for Agricultural Research, Spain) owns a set of four hyper-spectral images of the
study area (Figure 1), one per year between 2005 and 2008. These images were acquired by
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Figure 1. Study area in Guadalajara province, central Spain.
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the AHS (Airborne Hyperspectral Scanner) sensor that flies on-board a CASA-C212 aero-
plane. Hyper-spectral images were used to assess fire severity and to monitor post-fire
vegetation regeneration.

The AHS sensor is an 80-band airborne imaging radiometer, developed by ArgonST
(USA) and operated by INTA (National Institute for Aerospace Technology, Spain) since
2004. It has 63 bands in the reflective part of the spectrum (430–2500 nm), seven bands in
the middle-infrared region (3300–5400 nm), and 10 bands in the thermal infrared region
(8200–12,700 nm). The AHS sensor is a line-scanner with an FOV (field of view) of 90◦,
an IFOV (instantaneous field of view) of 3.5 mrad, and an average spatial resolution of
3 m. Once energy coming from the earth reaches the sensor, it is divided into five opti-
cal ports: PORT1, PORT2A, PORT2, PORT3, and PORT4. Each port corresponds to one
of the following spectral regions: VIS (visible), NIR (near-infrared), SWIR (shortwave
infrared), MIR (middle-infrared), and TIR (thermal infrared). Bandwidths vary according
to the spectral region. Information is coded in 12 bits, and each line in an image is com-
pounded by 750 pixels. AHS accounts for two internal sources of reference, both of which
are black bodies of selectable temperature. These two black objects are sensed with every
new line, proving zero radiance values for the reflective channels (PORT1, PORT2A, and
PORT2) and calibration levels for the emissive bands (PORT3 and PORT4).

The first image was acquired on 6 October 2005, a few weeks after the fire and just
before the first autumn rainfalls. This image clearly reflects the state of the vegetation
cover after the fire. Three additional flights were conducted in 2006 (6 October), 2007
(28 September), and 2008 (15 September) (Figure 2). Each campaign consisted of seven

(b)

(d)(c)

(a)

1052.50 km

1052.50 km 1052.50 km

10

N

NN

N

52.50 km

Figure 2. Hyper-spectral AHS mosaics acquired on the: (a) 6 October 2005; (b) 6 October 2006;
(c) 28 September 2007; and (d) 15 September 2008.
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parallel rows coinciding with the solar plane to avoid, or at least minimize, illumination
problems. In addition, the flight rows overlapped, enabling the production of mosaics.
Sensor and flying height were configured to produce a theoretical spatial resolution of
3.5 m. Such sensor and flight configurations were held constant for each campaign to
preserve equal image acquisition conditions. Data related to flight direction and image
acquisition time were also recorded to correct for the effects that different illumination
geometries have on image quality.

3.2. MODIS images

MODIS images acquired by the Terra NASA (National Aeronautics and Space
Administration) satellite, which was launched in 1999, were also used because of their
appropriate temporal and spatial resolutions for analysing vegetation dynamics before and
after fire (van Leeuwen 2008; van Leeuwen et al. 2010). In particular, the 8-day com-
posite MOD09A1 (MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m ISIN Grid
version 005) surface reflectance product was selected for this study. MOD09A1 is a com-
pound image consisting of seven surface reflectance bands located in the VIS, NIR, and
SWIR regions, with bands centred at wavelengths of 648 (red), 858 (NIR), 470 (blue), 555
(green), 1240 (SWIR1), 1640 (SWIR2), and 2130 nm (SWIR3). The spatial resolution is
500 m. This product can be used to estimate the surface reflectance of each band as if it
had been measured at the ground level, assuming no atmospheric distortion or absorption.
A general description of the MODIS surface reflectance products can be found in the User
Guide published by Vermote, Kotchenova, and Ray (2011). Using the MODIS images, we
generated an NDVI time series that extends from February 2000 to December 2007. This
time series was used to analyse vegetation regeneration patterns after fire at a forest state
level in support of the AHS data sets with high spatial and spectral resolutions.

3.3. Ancillary data

In addition to the AHS and MODIS image data sets, we used the following ancillary infor-
mation: (i) an administrative map of forest states within the study area (coordinate system:
UTM Zone 30, ED-50), which was provided by the Junta de Castilla-La Mancha (Spain)
(see Figure 3); (ii) data from the Second National Forest Inventory (IFN2) (ICONA 1993)

Burned area
Forest states map

0 2.5 5 10 km 0 2.5 5 10 km

Burned area
Forest states map

Figure 3. Forest states map and the forest states affected by the 2005 Guadalajara fire. Forest state
GU-240 was not burned, so it was used as a reference sample.
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for the Guadalajara province, which were provided by the Banco de Datos de la Naturaleza,
Ministry of Environment (Spain); (iii) a digital elevation model at 1:25,000 scale, provided
by the National Geographic Institute (coordinate system: UTM Zone 30, ED-50); and (iv)
field work conducted by the Junta de Castilla-La Mancha within the study area during 2007.
The administrative map was used for territorial analyses at the forest state level, while the
IFN2 sample plot data were used to analyse pre-fire forest composition and structure. The
digital elevation model was used for geometric corrections of the AHS images, and the
field work was used for validation purposes.

4. Methodology

4.1. Fire severity field data

Three 2-day field trips were conducted in October 2005 in the study area. During the first
trip, we made a general survey of the study area to plan future sampling work. Field data
were collected during two subsequent trips and used to produce and validate the fire severity
map that was developed from the first AHS hyper-spectral image.

Due to time limitations, the fieldwork components of this study were designed to
quickly evaluate certain variables for a large area. In addition, the study area was strati-
fied into homogeneous regions based on appropriate criteria, including vegetation type, fire
severity or damage level, and accessibility. Every possible combination of fire severity and
pre-fire vegetation type was registered. Sample points were categorized into two types: (i)
A points, which were situated within the study area and reflected four different levels of
fire severity; and (ii) B points, which were situated outside the study area (unburned sites)
and were afterwards used to define training areas (endmembers) of unburned vegetation
and bare soil. The coordinates of every A and B sample point were registered using a GPS
device. In addition, A points were assigned to a fire severity level (unburned, low, moderate,
or high), while B points were characterized by attributes such as vegetation composition,
coverage percentage, structural vegetation type, height of litter, and humus (up to the min-
eral soil). In the laboratory, information related to the pre-fire forest vegetation condition
of each of the A points was collected from the IFN2 sample plots. During the field trips,
116 A points and seven B points were collected. Fire severity levels in the field were defined
according to the following criteria.

(1) Unburned (severity 0): no visible effects of fire on vegetation.
(2) Low fire severity (severity 1): less than 50% of the vegetation cover (trees plus

understory) was affected by fire, and less than 30% of the trees (both dominant and
co-dominant) were completely burned (in this case, shrubs and grass are the most
affected).

(3) Moderate fire severity (severity 2): more than 50% and less than 90% of the vege-
tation cover (trees plus understory) was affected by fire, and less than 75% of the
trees were completely burned (in this case, the understory is usually totally dead,
although it may be capable of sprouting).

(4) High fire severity (severity 3): more than 90% of the vegetation cover (trees plus
understory) appears completely burned and dead, although some species may be
capable of sprouting.

4.2. Field spectra campaigns

Three field spectra campaigns were completed in the study area in 2005, 2007, and 2008,
coinciding with flight times. Unfortunately, a spectra campaign was not performed in 2006.
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The collected spectra were used for AHS image pre-processing (radiometric correction)
and to validate the AHS correction process. According to the criteria of Che and Price
(1992), field spectra data for radiometric correction and validation purposes were sampled
in areas large enough to select sufficiently pure and homogeneous pixels within the image.

Field spectroscopy was conducted using an ASD Fieldspec 3 portable spectro-
radiometer. This radiometer was designed to gather solar reflectance, radiance, and
irradiance data in the spectral range of the VIS, NIR, and MIR regions. For radiometric
correction purposes, we selected three reference surfaces: a sports field, a gravel road, and
bare soil (Figure 4). For each of these surfaces, we collected three spectra series of 10 mea-
surements each, calibrating the white spectra at the beginning of the first series and between
series. In the laboratory, each series was analysed, and all out-of-range measurements were
eliminated. The final spectrum for each of the three materials was the average of the three
corresponding corrected series (see Figure 4).

For final product validation purposes, we selected four reference surfaces: a sports field,
bare soil, a forest area, and dry grassland. For each of these surfaces, we used the procedure
that was used for the three reference surfaces.
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Figure 4. Field spectra campaigns reference surface pictures and spectral signatures for (a) a sport
field, (b) a gravel road, and (c) a bare soil.
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4.3. Hyper-spectral AHS images pre-processing

The raw AHS data sets were imported in binary format and stored as images. At this stage,
the information content of each pixel was the digital level recorded at the time of acqui-
sition. The pre-processing of the hyper-spectral images included the following steps: (i)
radiometric correction, (ii) geometric correction, (iii) geometric multitemporal adjustment,
(iv) topographic correction, (v) atmospheric correction, and (vi) reflectance multitemporal
adjustment. All these steps were performed for each of the seven parallel rows that were
used to generate each of the four images. This yielded 28 scenes prior to the creation of the
four corresponding mosaics (one per year).

An atmospheric radiative transfer model called MODTRAN5 (Moderate Resolution
Atmospheric Transmission, http://modtran5.com/, Burlington, MA, USA) was used for
radiometric correction. Afterwards, PARGE (Parametric Geocoding, Wil, Switzerland;
Schläpfer, Schaepman, and Itten 1998), an orthorectification and direct geocoding soft-
ware for airborne optical scanner data, was used for geometric correction of the data.
Both topographic and atmospheric corrections were performed with ATCOR4 (Airborne
Atmospheric and Topographic Correction Model, Wil, Switzerland; Richter and Schläpfer
2002), a specific software for airborne optical scanner data. Finally, the IDL language was
used to accomplish both the geometric and reflectance multitemporal adjustments. The
INTA team provided support throughout these processing steps.

The pre-processing procedure started with the radiometric correction. Several sensor
calibration parameters, which were calculated in the laboratory using the collected field
spectra data, were used in this step. Digital levels were converted into radiances at the
sensor level (top-of-atmosphere) (W cm−2 sr−1 nm−1) using the MODTRAN5 software.

Geometric corrections were then performed using the PARGE software (Schläpfer,
Schaepman, and Itten 1998). The lack of stability of airborne systems introduces variations
in the flight path and the attitude, which is given by the roll, pitch, and heading angles, of the
plane that cannot be corrected simply with ground control points (Schläpfer, Schaepman,
and Itten 1998). A pixel-by-pixel calculation must be performed instead to account for the
position and altitude of the plane at the time of image acquisition (Schläpfer, Schaepman,
and Itten 1998). The AHS sensor is integrated with a Flight Management System (FMS,
POSTrack 410, from Applanix) that includes a GPS receiver and an inertial measurement
unit (IMU). In the AHS system, synchronization is performed by sending an electronic
pulse to the FMS each time a data line is acquired. Then, the FMS keeps a record that
provides the position and orientation of the sensor at that particular time. A GPS reference
station, which is close to the flight area, is used for differential corrections of the FMS
data. The position and orientation data are then related by a Kalman filter application. As a
result, the pixels are geo-located in a geodetic system of reference. Finally, the datum is
transformed, and the geoid’s undulation is calculated. The result is a file containing six
parameters of external orientation (EO: XUTM, YUTM, Ho, roll, pitch, and heading) for each
AHS image line. The EO parameters are then applied to the AHS images using the PARGE
software. The output is an image in which the X and Y coordinates are stored for each
pixel. This file is then converted to a regular grid in which each pixel value is situated in
the correct position and the rest of the grid pixels are filled using a resampling method.
The IGN digital elevation model was used during the geometric correction process in the
PARGE software.

In the next step, a geometric multitemporal adjustment of the four images was
performed to correct positional errors introduced during the geo-referencing process.
Identifying the geometric error associated with a geo-referenced image is essential to
conducting an accurate analysis, especially for multitemporal studies. In this case, a
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discrepancy between images can be labelled as a surface change when, in fact, it is caused
by a lack of geometric accuracy between images. Therefore, to evaluate and correct any
positional errors committed during the geo-referencing process, a moving window corre-
lation method, developed by Prado Ortega (2007), was used. The result was an image in
which (i) Band 1 stores the maximum correlation value found in each window, (ii) Band
2 provides the mismatches found in the XUTM direction, and (iii) Band 3 provides the mis-
matches found in the YUTM direction, which correspond to the position of the maximum R2

value. With the generated mismatch maps, errors were evaluated and corrected by modify-
ing the external orientation parameters that were applied to the image. The maximum error
found in this process was less than half a pixel.

The topographic correction offsets the differences in solar illumination due to altitudi-
nal ground variations. For example, shaded areas have less reflectivity, while sunny areas
have higher than expected reflectivity. The ‘rugged terrain’ module of the ATCOR-4 soft-
ware (Airborne Atmospheric and Topographic Correction Model) (Richter and Schläpfer
2002) was used in the initial atmospheric correction step. Due to the large number of
artefacts found when using this module, we decided to perform a topographic correction,
using the TOPOCOR module of the ATCOR-4 software package, before applying the atmo-
spheric correction, using the ‘flat terrain’ module. This approach substantially improved the
results. A digital terrain model was used to obtain the elevation, slope, and aspect needed
to accomplish the topographic correction. In addition, solar geometry conditions, such as
the date, time, and solar zenith and azimuth angles, at the time of the flight were also taken
into account.

Atmospheric corrections were performed to remove the effect of electromagnetic radi-
ation scattering caused by gases and suspended particles in the atmosphere and to thereby
produce image data that are independent of weather conditions. Further, to implement
the ‘flat terrain’ module, several parameters were introduced to simulate the most likely
atmospheric conditions: (i) the date and time of flight, the solar geometry, and the flight
variables, including flight and terrain altitude, geographic direction, and solar zenith and
azimuth angles; (ii) the type of sensor and calibration parameters; and (iii) the atmospheric
conditions on the flight day, such as the type of aerosols and their concentrations, the level
of water vapour in the air, and visibility.

To ensure a sufficient level of temporal coherence among the four hyper-spectral
images, a reflectance homogenization procedure, called empirical line (Smith and Milton
1999), was performed using non-variant spectra from the 2008 field campaign. The
empirical line methodology produces linear fits from ‘brilliant and dark’ surface spectral
signatures within a study area. The surface used in this step should be invariant during the
study period (2005–2008). Figure 5 shows the comparison between the spectra collected
during the 2008 field campaign (spectra for validation purposes) and the spectral signa-
tures obtained from the corrected images. As shown in Figure 5, the two spectral signatures
are in agreement.

4.4. MODIS image pre-processing

MODIS products were downloaded from the NASA Distributed Active Archive Centre
(DAAC, https://lpdaac.usgs.gov/) in a HDF-EOS format (Hierarchical Data Format –
Earth Observation System). The MOD09A1 products were first projected into the UTM
(Universal Transverse Mercator) Zone 30N – WGS-84 coordinate system using the MODIS
Reprojection Tool (MRT, https://lpdaac.usgs.gov/tools/modis_reprojection_tool). NDVI
was then computed for each 8-day composite, and the time series was constructed. A total
of 361 images were downloaded and processed.
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Figure 5. Spectral signatures for four ground covers (sports field, bare soil, forest area, and dry
grassland) as measured in field (field reflectance) and by the AHS sensor (AHS pixel reflectance).

4.5. Image analysis

4.5.1. Burned area

After pre-processing the AHS images, the fire-affected area was delineated. The 2005 AHS
image, the image that was taken closest in time to the fire event, was processed using a
matched filtering analysis (Harsanyi and Chang 1994). This method assigns to a single
pixel a probability value that estimates how similar the pixel is compared to an endmem-
ber collection, which is defined using a sample of 100 pixels from the AHS image itself.
The resulting image was classified using an Isodata algorithm (Tou and Gonzalez 1974) to
generate the final burned area map.

4.5.2. Fire severity

Fire severity was estimated using NBR (Key and Benson 2005), which has been used suc-
cessfully by previous researchers (Cocke, Fulé, and Crouse 2005; Wimberly and Reilly
2007; Vicente-Serrano, Pérez-Cabello, and Lasanta 2008; Gitas, de Santis, and Mitri 2009),
including those studying Mediterranean ecosystems. The NBR is calculated using pixel
reflectances in the NIR and SWIR bands as shown in Equation (1):

NBR = ρNIR − ρSWIR

ρNIR + ρSWIR
, (1)

where, ρNIR and ρSWIR represent surface reflectance in the NIR and SWIR bands, respec-
tively. This spectral index was selected because it is sensible to changes in vegetation due to
fire. This index varies between −1, indicating high severity, and +1, indicating low sever-
ity or non-affected vegetation. AHS bands for NBR calculations were selected based on
low noise levels and large variabilities. According to this information, the best channel for
representing NIR wavelengths was band 13, centred at 800 nm, while the suitable bands
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for the SWIR wavelengths were bands 31, 38, and 41, centred at 2130, 2220, and 2250 nm,
respectively. Therefore, three severity indices were calculated: NBR1, NBR2, and NBR3.
An Isodata unsupervised classification method was performed to categorize fire severity
into three levels of damage. One classification was performed for each of the three indices,
NBR1, NBR2, and NBR3. Fire severity field data were used to select the most accurate
NBR for fire severity estimation. The labelling of each spectral class to each fire sever-
ity level was done based on the NBR values, e.g. the class with lowest NBR values was
associated with the highest fire severity.

Using the most accurate classification, the percentage of affected area was estimated at
the forest state level with the three previously defined fire severity classes. We decided to
use forest states because these are the management units used by Forest Managers. Forest
states were defined using Regions of Interest (ROIs) and the cartography provided by the
Junta de Castilla-La Mancha. The percentage of affected area for each severity class at the
forest state level was estimated in relation to the total burned area within each state, not the
total forest state area.

4.5.3. Post-fire vegetation recovery

Post-fire vegetation recovery analyses were performed using two approaches: one based on
data with high spatial and spectral resolutions (AHS images) and one based on data with a
high temporal resolution (MODIS time series).

The post-fire vegetation recovery assessment, based on hyper-spectral data, was con-
ducted using a spectral unmixing procedure (Adams, Smith, and Johnson 1985), a common
method for estimating the percentages of each endmember within a pixel (Settle and Drake
1993; Robichaud et al. 2007; Cochrane and Souza 1998; Smith et al. 2005). To define the
spectral profile of each endmember, the Pixel Purity Index (PPI) procedure (Boardman,
Kruse, and Green 1995) was applied on the minimum noise fraction (MNF) transformation
(Green et al. 1988). The MNF transformation eliminates the noise in an image. In addi-
tion, the PPI is a method for selecting the purest pixels in multispectral or hyper-spectral
images. Once pure pixels were selected, the inverse of the MNF was applied. The purest
pixels corresponded to the basic components of the image. Finally, the pixels that clearly
corresponded to full green vegetation coverage and bare soil were selected as endmembers
for the spectral unmixing procedure (Figure 6).
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Figure 6. Green vegetation and bare soil spectral signatures.
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The post-fire vegetation recovery assessment, based on the MODIS multispectral time
series data, was conducted using the NDVI, which was calculated based on the red (R) and
NIR reflectance values, as shown in Equation (2):

NDVI = ρNIR − ρR

ρNIR + ρR
, (2)

where ρR and ρNIR represent surface reflectance in the red and NIR bands, respectively. The
MODIS R and NIR bands are centred at 648 and 858 nm, respectively. This index varies
between −1 and +1, with higher values indicating higher levels of greenness.

Average forest-state-level NDVI time series data were extracted for the temporary study
of vegetation recovery. This analysis was performed to assess post-fire vegetation regen-
eration patterns. The time series spanned the period from February 2000 to December
2007. Pre-fire and post-fire trends were analysed in each forest state to quantitatively assess
vegetation recovery. The annual pre- and post-fire vegetation patterns were also studied
qualitatively.

The linear relationship between vegetation recovery estimated from the NDVI values
(independent variable) for an 8-day composite period (dependent variable) was quantified.
The linear equation has the following expression:

Y = α + βX + ε,

where Y represents the NDVI values; X represents time; α is the value of the intercept;
β is the slope; and ε is the error. The slope indicates regeneration intensity and whether
regeneration is positive or negative.

5. Results

5.1. Burned area

Using the methodology described above, a total burned area of 129.8 km2 was mapped
(see Figure 7). This value is similar to the figure reported by the Spanish Ministry of
Environment (128.8 km2).

5.2. Fire severity

The fire severity assessment was performed using the NBR (Equation 1). Field data were
used to assess the NBR-derived severity maps. The map based on NBR1 had the highest
accuracy at 70%.

Figure 8 shows the spatial distribution of fire severity within the study area. In this
figure, a three-level legend is used: (i) low severity (mean NBR = 0.12; 25.4 km2 – 19.60%)
is shown in white; (ii) medium severity (mean NBR = –0.20; 72.9 km2 – 56.12%) is shown
in yellow; and (iii) high severity (mean NBR = –0.37; 31.5 km2 – 24.28%) is shown in
orange. The predominant severity class is medium severity, representing approximately
72.9 km2 (56.12%). High severity is next, representing an area of 31.5 km2 (24.28%).
Finally, low severity represents an area of 25.4 km2 (19.60%). Figure 9 synthesizes this fire
severity information based on the forest state units used by the Forest Service (Figure 3).

Table 1 shows the percentage of affected area at the forest state level, using the pre-
viously defined fire severity classes. This analysis provides an indication of the level of
damage caused by the fire in each forest state.
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0 2.5 5 10 km

N

Figure 7. Burned area in red superimposed on the hyper-spectral AHS mosaic acquired on
6 October 2005.

Low severity

Medium severity

High severity

0 2.5 5 10 km

N

Figure 8. AHS-based fire severity map displaying three levels of damage: high, medium, and low
severity.

We used forest state GU-240, in which NBR values were positive, as an unburned or
non-affected forest state reference. Lower NBR values indicate higher levels of fire severity.
As shown in Table 1, the forest states with the highest severity were GU-299 and GU-300,
located in the central part of the study area (Figure 3). The results presented in Table 1
show that in these forest states, more than half of the affected area was classified as high
severity.
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Figure 9. Mean AHS-derived fire severity value, estimated using the NBR and calculated at the
forest state level. The highest severity level is dark grey, while the lowest level is white.

Table 1. AHS-derived burned area (in per cent) as a function of fire severity.

ID Name (municipality)

High
severity

(%)

Medium
severity

(%)

Low
severity

(%)

GU-126 Dehesa Común (Cobeta) 14.92 53.69 31.39
GU-149 Dehesa (Ciruelos del Pinar) 17.19 70.45 12.36
GU-150 Pinar (Ciruelos del Pinar) 18.32 54.82 26.86
GU-190 Entredicho (Selas) 9.23 53.50 37.27
GU-191 El Pinar (Selas) 13.48 36.42 50.10
GU-232 Dehesa Común de Solanillos (Mazarete) 23.07 59.33 17.60
GU-239 Los Casares (Cobeta) 19.61 64.06 16.33
GU-292 Sierra del Gallubar y Vigorra, Los Milagros,

Vallejo del Cabrero y las Ocecillas (Anguita)
17.34 53.23 29.43

GU-293 El Bosque del Buen Desvío (Anguita) 16.53 54.06 29.41
GU-294 El Pinar (Anguita) 27.44 63.62 8.95
GU-296 Pinar (Luzón) 33.00 55.97 11.03
GU-297 La Tasuguera (Riba de Saelices) 42.36 45.29 12.36
GU-298 Ceño Negrillo y la Virgen (Ablanque) 29.52 50.71 19.77
GU-299 El Pinar (Mazarete) 63.38 35.55 1.08
GU-300 El Pinarejo (Anquela del Ducado) 56.15 41.54 2.31
GU-301 Dehesa de la Mata (Anquela del Ducado) 26.89 38.49 34.62
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Forest states GU-190, GU-191, and GU-126 had the lowest NBR values. They are sit-
uated in the southeast part of the study area, near GU-240, the non-affected forest state.
In these forest states, more than half of the affected area is classified as medium or low
severity.

5.3. Post-fire vegetation recovery using AHS images

The evolution of vegetation during the period from 2005 to 2008 was assessed using the
spectral unmixing procedure (Figure 10). The light grey areas represent high levels of veg-
etation coverage, while dark grey areas are those where either the percentage of bare soil is
high or the vegetation coverage is low.

Table 2 presents the average vegetation cover at the forest state level. The results
show that the areas with the highest degree of vegetation recovery are located in the
northwest, while those with the lowest amount of vegetation recovery are located in the
southeast. Forest states ‘Dehesa’ (GU149), ‘El Bosque del Buen Desvío’ (GU293), and
‘Pinar’ (GU296), all of which are located in the northwest section of the affected area, had
the greatest regeneration rates. Forest state GU298, located in the central part of the study
area, had the lowest rate of regeneration. Forest states GU126, GU191, and GU-190, all of
which are in the southeast, also had low levels of regeneration. The field work conducted
by the Junta de Castilla-La Mancha during 2007 and expert opinions confirm the precision
of these regeneration maps.

5.4. Post-fire vegetation recovery using MODIS time series

Figure 11 shows the temporal evolution of the MODIS NDVI time series for each forest
state between February 2000 and December 2007. All the series clearly show the effect of

20062005

20082007

Figure 10. AHS-derived green coverage percentage, estimated from spectral unmixing in 2005,
2006, 2007, and 2008. Grey scale ranges from black, representing bare soil, to white, representing
full vegetation coverage.
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Table 2. Mean percentage of vegetation cover per forest state resulting from the spectral
unmixing procedure based on AHS hyper-spectral images.

% Vegetation cover

ID 2005 2006 2007 2008

GU-126 0.17 0.32 0.32 0.33
GU-149 0.17 0.59 0.66 0.52
GU-150 0.13 0.29 0.32 0.36
GU-190 0.17 0.26 0.23 0.31
GU-191 0.17 0.24 0.19 0.32
GU-232 0.12 0.29 0.26 0.34
GU-239 0.12 0.29 0.31 0.33
GU-292 0.09 0.15 0.25 0.34
GU-293 0.15 0.43 0.53 0.44
GU-294 0.08 0.22 0.29 0.33
GU-296 0.09 0.31 0.38 0.38
GU-297 0.06 0.21 0.28 0.32
GU-298 0.10 0.19 0.18 0.30
GU-299 0.05 0.28 0.23 0.33
GU-300 0.04 0.21 0.21 0.31
GU-301 0.13 0.24 0.22 0.32

the fire event in the vegetation response, as measured by the satellite. Figure 11 also shows
the NDVI time series trend in the pre- and post-fire conditions.

During the pre-fire stage, forest states GU-296, GU-293, and GU-149 showed a sharp
increase in the NDVI values at the beginning of spring, followed by a smooth decrease in
vegetation greenness during the dry period. However, for the other forest states, the opposite
pattern was observed. At the beginning of spring, the NDVI values increased gradually and
then decreased sharply during the dry season. The pre-fire vegetation trend showed a value
near zero.

Coinciding with the fire event, a sharp drop in the NDVI values was observed in all
cases as a result of the drastic reduction in vegetation greenness caused by fire. After the
pre-fire vegetation patterns were analysed, the temporal evolution of vegetation in each
forest state was evaluated for the following years (Table 3). The trend analysis yielded
different slope values, or vegetation recovery rates, for each forest state.

The vegetation pattern of forest states GU-149, GU-293, and GU-296 during the first
year after the fire followed two cycles (Figure 11(a)). However, during 2007, the pattern
changed from a bimodal pattern to a unimodal pattern, with a maximum value in spring and
a minimum value in fall–winter. Further, comparing the pre- and post-fire patterns revealed
many similarities. The trend analysis showed a positive slope in the curve, indicating a
positive trend in the regeneration process. Forest states GU-294 and GU-297 presented an
irregular pattern (Figure 11(b)) during the post-fire period. The NDVI values increased
from July 2005 to December 2007 following a period of irregular temporal behaviour.
The vegetation recovery model indicated a low positive trend for GU-294. During the first
year after the fire, forest states GU-150, GU-232, GU-239, and GU-301 (Figure 11(c))
showed patterns similar to forest states GU-149, GU-293, and GU-296. These patterns were
characterized by a marked double cycle. The vegetation recovery model showed positive
slope values for GU-232 and GU-239, whereas for GI-150 and GU-301, the trend anal-
ysis showed low values. Forest states GU-299 and GU-300 showed clear increases in the
NDVI values during the years after the fire, with maximum values above 0.5 (Figure 11(d)).
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Figure 11. MODIS-derived NDVI temporal evolution estimated during the period 2000–2007 at the
forest state level: (a) GU-149, GU-293, and GU-296; (b) GU-294 and GU-297; (c) GU-150, GU-232,
GU-239, and GU-301; (d) GU-299 and GU-300; (e) GU-292 and GU-296; and (f ) GU-126, GU-190,
and GU-191.

However, a double cycle was observed in 2007. The vegetation recovery model showed
positive values for both forest states. The patterns observed in forest states GU-292 and
GU-298 were irregular during the first year after the fire, followed by a double cycle pat-
tern in subsequent years (Figure 11(e)). The vegetation recovery analysis yielded slope
values near zero. During the post-fire period, forest states GU-126, GU-190, and GU-191
(Figure 11(f )) showed no significant increases in the NDVI values, and the trend analysis
showed low slope values near zero.
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Table 3. Average NDVI as derived from MODIS time series during the pre-fire period and after
fires in 2006 and 2007. NDVI was scaled from 0 (bare soil) to 1 (full vegetation cover).

GU-149 GU-150 GU-126
GU-293 GU-294 GU-232 GU-299 GU-292 GU-190
GU-296 GU-297 GU-239 GU-301 GU-300 GU-298 GU-191

NDVI pre-fire 0.569 0.598 0.606 0.603 0.609 0.592
NDVI 2006 0.365 0.261 0.323 0.298 0.282 0.375
NDVI 2007 0.409 0.305 0.348 0.356 0.308 0.386

Table 3 summarizes the mean NDVI values during the pre-fire period from February
2000 until the date of the fire. This table also shows the mean NDVI values during the
post-fire period for the years 2006 and 2007.

These results show the similarity of the NDVI values in most of the forest states during
the pre-fire period, with values ranging from 0.57 to 0.60. As a result of the fire, the NDVI
values decreased to approximately 0.30 in all forest states except GU-126 and GU-190,
where the values fell to 0.20. In 2007, a maximum difference of 0.1 was observed among
forest states.

6. Discussion

Vegetation recovery studies based on remotely sensed data are often based on multispec-
tral data with medium to high spatial resolutions (Viedma et al. 1997; Miller and Yool
2002; Díaz-Delgado, Lloret, and Pons 2003; Lentile et al. 2006; Röder et al. 2008; Vicente-
Serrano, Pérez-Cabello, and Lasanta 2008), though several studies have used hyper-spectral
data with high spatial and spectral resolutions (Riaño et al. 2002). However, the lack of tem-
poral continuity, including the non-availability of pre-fire information, and the high cost of
these images complicate their use. Recently, sensors such as MODIS, which produce data
with a high temporal resolution and extent, have been used for vegetation recovery analysis
on broad scales (Van Leeuwen 2008; van Leeuwen et al. 2010).

In this research, we combined hyper-spectral AHS information with multitemporal
long-term MODIS time series data to better understand post-fire vegetation recovery. AHS
data were used to determine the amount of green vegetation at a sub-pixel level, while
MODIS data were used to assess the temporal patterns of vegetation types that clearly
indicate regeneration. The percentage of vegetation cover over time generally indicates
regeneration in a given area, but this process should be extended to account for other
factors, such as post-fire vegetation patterns and fire severity.

The AHS-based regeneration maps reveal vegetation recovery during the 4-year post-
fire study period. According to the results from the 2007 field surveys, the highest levels
of vegetation recovery occurred in areas with a predominance of Quercus sp. and shrubs
because these species actively re-sprout. The lowest levels of vegetation recovery occurred
in areas with no regeneration or with a predominance of Pinus sp. In this case, differentiat-
ing between vegetation recovery and bare soil was difficult because the percentage of bare
soil within pixels was high during the first recovery stages, as Pinus pinaster regenerates
from seed.

Before the fire, forest states GU-149, GU-293, and GU-296 showed a sharp increase in
the NDVI values at the beginning of spring, likely coinciding with the emergence of leaves
on deciduous species. During the dry period, a smooth decrease in the NDVI values was
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observed, likely as a result of the loss of moisture at the beginning and the eventual falling
of leaves. The opposite pattern was observed in the other forest states; at the beginning
of spring, the NDVI values increased gradually due to the mixture of herbs, shrubs, and
evergreens, while during the dry season, the NDVI values declined sharply due to the rapid
drying of the herbaceous vegetation.

During the post-fire stage, forest states GU-149, GU-293, and GU-296 had higher
regeneration rates, mainly due to the regeneration of Quercus pyrenaica, the dominant
species in these areas. The forest states with the lowest regeneration rates, GU-126, GU-
190, and GU-191, are located in the south. These areas showed moderate levels of Pinus
pinaster regeneration during the 2007 field work; therefore, the poor AHS-based regener-
ation rates found in these forests may be due to the high proportion of bare soil associated
with pine regeneration.

The double cycle observed in forest states GU-149, GU-293, and GU-296 after the
fire is characteristic of herbaceous species. In this case, the NDVI values increase dur-
ing the spring as a result of photosynthetic activity and gradually decline during the
summer due to the loss of vegetation moisture. During the fall, another NDVI increase
was observed, coinciding with the emergence of herbaceous species prompted by rainfall.
However, throughout 2007, the pattern changed from bimodal to unimodal, a trend similar
to the pre-fire vegetation response. Although the post-fire NDVI values are lower than the
pre-fire values, we concluded that no management practices were needed in these forest
states. The same situation was observed for forest states GU-150, GU-232, GU-239, and
GU-301.

Forest states GU-299 and GU-300 showed clear increases in the NDVI values during
the subsequent post-fire years, reaching values above 0.5. This result could indicate a high
level of forest regeneration. However, after analysing this pattern in more detail, a double
cycle was identified. This cycle was still present in 2007. This double cycle is characteristic
of herbaceous vegetation, which could indicate low rates of forest regeneration. Therefore,
these forest states may be selected for immediate intervention.

The irregular pattern observed during the first post-fire year in forest states GU-298 and
GU-292 and the double cycle pattern observed during the next years could indicate either
a low rate of regeneration or the dominance of shrubs and herbaceous vegetation. The
increase of greenness during the post-fire period was significantly low, which could indi-
cate a lack of regeneration and, thus, the need for immediate intervention in these states.
A similar situation was observed in forest states GU-294 and GU-297.

The increase of the NDVI values in forest states GU-126, GU-190, and GU-191 during
the post-fire period was not significantly high. However, based on changes during the pre-
fire period, the decrease of the NDVI values was also not as severe as in other forest states.
Thus, although the NDVI increase in these states was lower during the post-fire period
than in the other affected forest states, the NDVI value was near 0.5, indicating the gradual
recovery of vegetation in these forest states.

7. Conclusions

Following a forest fire, the most important data sets are maps of the affected area and esti-
mates of the level of damage caused by the fire. Monitoring vegetation recovery in the
subsequent years is also valuable. These three types of information are key aspects in for-
est planning and management. This study demonstrated how the high spectral quality and
spatial resolution of hyper-spectral data can be combined with the high temporal resolution
of multispectral data to monitor vegetation recovery.
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Compared to the official figures from the Ministry of Environment, the AHS hyper-
spectral images accurately mapped fire affected areas; the AHS images yielded an area
of 129.8 km2, while the Ministry’s statistics reported an area of 128.9 km2. This result
confirms our hypothesis regarding the ability of hyper-spectral images to provide the
cartography of burned areas.

The AHS hyper-spectral images also yielded accurate estimates of fire severity (i.e. the
level of damage). The NBR1 data provided a highly accurate severity index. This result
further corroborates the utility of remote sensing in estimating damage after a forest fire.

Finally, the AHS hyper-spectral images yielded reasonably accurate estimates of the
degree of post-fire vegetation recovery, especially in areas dominated by Quercus sp. and
shrubs. Combining hyper-spectral vegetation recovery images with multitemporal MODIS
data and fire severity cartography provides a better understanding of post-fire vegetation
recovery patterns. Based on this multi-source analysis, areas in need of urgent interventions
can be identified, thus facilitating post-fire management practices in the affected area.

The types of information used in this study provide forest managers with a reliable,
fast, and economical tool compared to traditional methods such as field work.
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