TAU-RSL business card Eyal Ben Dor TAU- RSL is "a national excellence center" for HSR (Ministry of Science) Over 250 peer reviewed papers, chapter books and reports on HSR Currently 4 patents 4PhD Serving at the advisory boards for EnMAP, HyspIRI and Shalom 4sC programs (Germany US and Israel Space Agencies) Graduated WP leader: ISPRS VII/2 information extracted from HSR data and EUAFR 15 Phd WG 3 spectral information of soil Editor and co editors:, Remote Sensing, Soil and Environment 6 special issues 60 invited lectures in International RS and HSR conferences Chair and organizer of 4 international HSR conferences Currently running 4 International and 5 national projects

THE REMOTE SENSING

P

NASA

Program Building a soil spectral library of

the soils of Israel

Ν	1editerranean Regional Informati	on Network (MedRIN), 2	0 th March 2019	
P	rof. Eyal Ben-Dor			

Acknowledgments

Research partners

• •

• •

• •

- Dr. Gil Eshel Soil Erosion Research Station, Ministry Of Agriculture & Rural Development, Beit-Dagan.
- **Dr. Roei Egozi** Soil Erosion Research Station, Ministry Of Agriculture & Rural Development, Beit-Dagan.
- Dr. Naftaly Goldshleger The Department of Civil Engineering, Ariel University.

Research assistants

- Dr. Yaron Ogen Department of Geography and Human Environment, School of Geosciences, Faculty of Exact Science, Tel Aviv University.
- Ms. Jacquie Zaluda Department of Geography and Human Environment, School of Geosciences, Faculty of Exact Science, Tel Aviv University.
- Mr Nicolas Francos Department of Geography and Human Environment, School of Geosciences, Faculty of Exact Science, Tel Aviv University.

<u>Acknowledgments</u>

• **The Ministry of Agriculture** (Establishment of a national spectral library of Israeli soils for quantitative utilization of regional soils, Grant No. 13-21-0002)

Mediterranean Regional Information Network (MedRIN)

(IJ)

 (\textcircled)

WE ARE SOCIAL

https://gofcgoldvh1.umd.edu/regionalnetworks/mediterranean-regional-networkrogram

Research objectives

- Establishing a national soil archive for research and study purposes.
- Establishing a digital database of Israeli
- soils that includes chemical-physicalspectral information.
 - Developing an interactive data mining system.
 - Building an on-line portal where endusers can acquire information on the soil in any given geographical area freely and automatically.

https://gofcgoldvh1.umd.edu/regionalnetworks/mediterranean-regional-network

Mediterranean Regional Information Network (MedRIN)

Program

WE ARE SOCIAL

Collecting the samples

The national SSL includes different soil types from diverse locations, various land uses and varied depths.

Soil samples were collected by intensive field work or compiled from different sources such as:

The ministry of agriculture

Research institutes

Laboratories

Surveyors

Figure 2. Collecting the samples

Mediterranean Regional Information Network (MedRIN)

rogram

WE ARE SOCIAL

()

https://gofcgoldvh1.umd.edu/regional-networks/mediterranean-regional-network

The database

	No. of samples
Coordinates (long/lat)	1746
Clay (% wt.)	1302
Silt (% wt.)	1302
Sand (% wt.)	1302
Clay – PSD (% V)	433
Silt – PSD (% V)	433
Sand – PSD (% V)	433
CaCO3 (%)	1203
OC (%)	700
Organic Matter (%)	964
N (%)	446
C:N	446
EC (dS/m)	924
pH	756
Saturation	564
Spectrum	2978

Figure 4. A ternary diagram of the database

https://gofcgoldvh1.umd.edu/regionalnetworks/mediterranean-regional-network

Mediterranean Regional Information Network (MedRIN)

 (\mathfrak{V})

Land-Cover / Land-Use Change Program

(in)

and dozens more ...

WE ARE SOCIAL

WE ARE SOCIAL

WE ARE SOCIAL

 \mathfrak{V}

ean-regional-networ

Figure 6. LWIR models

in

Summary of results

••

• •

• •

• (

	R ² (test)	RPD	RMSEP	# samples (total)	# samples (test)
Clay (% wt.)	0.57	1.53	13.4	895	220
Thermal	0.83	2.06	6.73	82	17
Silt (% wt.)	0.66	1.71	7.31	908	222
Thermal	0.63	1.15	7.26	83	17
Sand (% wt.)	0.49	1.36	14.9	868	214
Thermal	0.76	1.80	12.1	85	15
Clay – PSD (% V)	0.94	4.18	2.68	400	97
Silt – PSD (% V)	0.94	4.05	5.68	417	101
Sand – PSD (% V)	0.95	4.53	7.68	417	101
CaCO3 (%)	0.74	1.91	7.23	798	197
Thermal	0.70	4.10	5.08	86	20
Organic Matter (%)	0.71	1.83	0.59	774	189
Thermal	0.76	1.84	0.87	83	18
OC (%)	0.80	2.24	0.28	547	133
Thermal	0.65	1.63	0.46	83	18
N (%)	0.90	3.10	0.04	404	97
C:N ratio	0.63	1.66	1.87	361	87
EC (dS/m)	0.49	1.28	1.10	841	207
Thermal	0.76	1.38	1.45	83	19
CEC	0.90	3.24	5.89	356	86
P Olsan	0.66	0.89	27.3	444	106
K in CaCl2	0.63	1.64	35.2	299	72
Hygroscopic Water	-	<->	×	<u> </u>	-
Thermal	0.91	3.38	0.77	82	17
Quartz (%)	-	->	< - >	×-	<u> </u>
Thermal	0.91	3.29	7.10	84	17

Land-Cover / Land-Use Change Program

WE ARE SOCIAL

https://gofcgoldvh1.umd.edu/regionalnetworks/mediterranean-regional-networkmedrin

(D) @MedRINetwork

@MedRINetwork (In Mediterranean Regional In Network (MedRIN

• •

•

The on-line portal

work (MedRIN)

Network (MedRIN

in

• •

•

• •

• •

• •

• •

WE ARE SOCIAL

https://gofcgoldvh1.umd.edu/regionalnetworks/mediterranean-regional-networ medrin

 \mathfrak{V}

				GOFC-GOL
				L C L U C Land-Cover / Land-Use Chang Program
of samples to	the tota	al sampled	area.	
	No. of Samples	Area (sq/m ²)	Ratio (*1000)	
Sweden	396	450,295	0.88	
Denmark	2,851	42,933	66.4	
France	2,200	551,695	3.99	
Australia	10,677	7,692,024	1.39	
Europe (LUCAS)	20,000	10,180,000	1.96	
Africa	17,000	30,370,000	0.56	
Israel (spectra)	2,978	22,072	134.9	
	\geq	$\overline{}$		
			Mediterran	ean Regional Information Network (MedR
	of samples to Sweden Denmark France Australia Europe (LUCAS) Africa Israel (spectra)	SolutionNo. of SamplesSweden396Denmark2,851France2,200Australia10,677Europe (LUCAS)20,000Africa17,000Israel (spectra)2,978	No. of Samples Area (sq/m²) Sweden 396 450,295 Denmark 2,851 42,933 France 2,200 551,695 Australia 10,677 7,692,024 Europe (LUCAS) 20,000 10,180,000 Africa 17,000 30,370,000 Israel (spectra) 2,978 22,072	No. of Samples to the total sampled area. No. of Samples Area (sq/m²) Ratio (*1000) Sweden 396 450,295 0.88 Denmark 2,851 42,933 66.4 France 2,200 551,695 3.99 Australia 10,677 7,692,024 1.39 Europe (LUCAS) 20,000 10,180,000 1.96 Africa 17,000 30,370,000 0.56 Israel (spectra) 2,978 22,072 134.9

• •

6

.

Mediterranean Regional Information Network (MedRIN)

)

....

•	•	•	•	•	•	
	•	•	-	-	-	1
	•					
	•					
	•					
	•					
	•					
	•					
	•					
	•					
	•					
	•					
•	•					
•	•					
•						

(
•	

Recommended NASA Priorities:

TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation
Aerosols	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their direct and indirect effects on climate and air quality	Backscatter lidar and multi- channel/multi- angle/polarization imaging radiometer flown together on the same platform	x		
Clouds, Convection, & Precipitation	Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes	Radar(s), with multi-frequency passive microwave and sub-mm radiometer	x		
Mass Change	Large-scale Earth dynamics measured by the changing mass distribution within and between the Earth's atmosphere, oceans, ground water, and ice sheets	Spacecraft ranging measurement of gravity anomaly	x		
Surface Biology & Geology	Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits and algal biomass	Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR	x	-	
Surface Deformation & Change	Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost	Interferometric Synthetic Aperture Radar (InSAR) with ionospheric correction		EMOTE	SEN

New Special Issue "Remote Sensing" open access

Special Issue Information

Soil Degradation

Soil degradation includes a number of processes, ranging from soil

erosion to soil contamination, which reduce the capability of soil to work as a base for vegetation roots. Soil can be degraded chemically and physically. Chemical processes connect to parameters of the soil that tie to soil chemical components and their reactions, including salinity, fertility decline and contamination, whereas physical processee

describe alterations in particle size, soil structure, compaction status and soil depth. Both chemical and physical processes can bring water loss and soil toxicity as well as other effects including erosion, deposition and soil swelling that all together direct to a reduction in soil productivity and fertility in space and time. Due to the dynamic nature of these effects, early monitoring can allow suppressive interventions before severe and irreversible soil problems arise. Methods to quantify soil degradation on a large area with a proper domain are needed and must be studied and developed. Various proximal and remote sensing disciplines such as laboratory and field sensors, unmanned aerial vehicles, airborne and spaceborne sensors are essential tools, well-suited for surveying large areas and monitoring soil degradation at a high temporal and spatial interval.
The following special issue focuses on "Monitoring Soil Degradation using Proximal and Remote Sensing Techniques". We

seek articles that utilize remotely sensed data for degradation monitoring, including but not limited to:

- innovative applications and methods in remote sensing of soil degradation, significant case studies;
- novel data analytics for soil degradation modelling applications at different geographic scales;
- multi-sensor and multi-resolution data analysis for degradation monitoring;
- optical and thermal remote sensing for soil degradation monitoring;
- potential of new generation of hyper and superspectral sensors in soil degradation monitoring;
- soil contamination (e.g. natural gas, petroleum hydrocarbons and potentially toxic elements) mapping and monitoring.

Prof. Eyal Ben-Dor Dr. Asa Gholizadeh

	} • • • • • • • • ⁻ • • • • • • • • • • • • • • • • • • •
e e <mark>n sense a se</mark>	
e e <mark>n s</mark> e de la constant	GOFC-GOLD
o o <mark>l</mark> a de la constante de la const	Global Observation of Forest and Land Cover Dynamics
o o <mark>li</mark> na di sua di	
o o <mark>li</mark> anti a substanti a	Land-Cover / Land-Lise Change
o o <mark>li</mark> anti a substanti a	Program
o o <mark>li</mark> anti anti anti anti anti anti anti anti	
• •	
Thankyyou	

• • (• (• (

Prof. Eyal Ben-Dor

bendor@tauex.tau.ac.il

Mediterranean Regional Information Network (MedRIN)

(1) @MedRINetwork (1) @MedRINetwork (1)

https://gofcgoldvh1.umd.edu/regionalnetworks/mediterranean-regional-networkmedrin •••

WE ARE SOCIAL

....